Structure II Recitation 2/2

Wood Column Analysis

Before we start ...

Today's Tasks

1. Homework Example (Wood Column Analysis) (15 Questions)
2. Lab (Columns)

Reminder

1. Preliminary report due at $\mathbf{2 / 1 6}$
2. Tower testing at $\mathbf{3 / 1 8}$

3. Wood Column Analysis

For the given dimensioned lumber column with $1 / 3$ point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = $15 \% . \mathrm{Ct}=\mathrm{Ci}=1.0$. Assume pinned end conditions (K=1).

DATASET: 1 -2- $-3-$

Wood Species

Wood Grade
Strong Axis Length, L1
Weak Axis Length, L2
EASTERN
HEMLOCKTAMARACK

Select Structural

Narrow Width, d2
Wide Width, d1
LoadType

Analysis of Wood Columns

Data:

- Column - size, length
- Support conditions
- Material properties $-\mathrm{F}_{\mathrm{c}}$, E
- Load

Required:

- Pass/Fail or margin of safety

1. Calculate slenderness ratio $\mathrm{I}_{\mathrm{e}} / \mathrm{d}$ largest ratio governs. Must be < 50

2. Find adjustment factors
$C_{D} C_{M} C_{t} C_{F} C_{i}$
3. Calculate C_{P}
4. Determine allowable F'c by multiplying the tabulated Fc by all the above factors
5. Calculate the actual stress: $\mathrm{fc}=P / A$
6. Compare Allowable and Actual stress.

F'c $>\mathrm{fc}$ passes

Q1: Tabulated Allowable Compressive Stress (Fc) Q2: Tabulated Minimum Modulus of Elasticity (Emin)

Check Table 4A:
$\mathrm{Fc}=\underline{\mathbf{1 2 0 0}} \mathbf{~ p s i}, \mathrm{Emin}=\underline{\mathbf{4 4 0 0 0 0}} \mathbf{~ p s i}$

Wood Species

Wood Grade

EASTERN HEMLOCKTAMARACK

Select
Structural

NDS Supplement, Table 4A, P.41~(PDF)
USE WITH TABLE 4A ADJUSTMENT FACTORS

Species and commercial grade	Size classification	Design values in pounds per square inch (psi)							Specific Gravity ${ }^{4}$ G	Grading Rules Agency
		BendingF_{b}	Tension parallel to grain\qquad F_{t}	Shear parallel to grainF_{v}	Compression perpendicular to grain $F_{c \perp}$	Compression parallel to grain $F_{\text {c }}$	Modulus of Elasticity			
							E	$E_{\text {min }}$		

EASTERN HEMLOCK-TAMARACK						, ,				
Select Structural		1,250	575	170	555	1,200	1,200,000	440,000	0.41	NELMA NSLB
No. 1	2 l \& wider	775	350	170	555	1,000	1,100,000	400,000		
No. 2		575	275	170	555	825	1,100,000	400,000		
No. 3		350	150	170	555	475	900,000	330,000		
Stud	2" \& wider	450	200	170	555	525	900,000	330,000		
Construction		675	300	170	555	1,050	1,000,000	370,000		
Standard	2" - 4" wide	375	175	170	555	850	900,000	330,000		
Utility		175	75	170	555	550	800,000	290,000		

Given from Question

Q3: Load Duration Factor (C_{D})

Look at Table 2.3.2,
Since my load type is Dead Load, $C_{D}=0.9$

Q4: Size Factor $\left(C_{F}\right)$
Look at Table 4A,
$\mathrm{C}_{\mathrm{F}}=\mathbf{1 . 0}$

Table 2.3.2 Frequently Used Load Duration Factors, $\mathbf{C}_{\mathbf{D}}{ }^{1}$

Load Duration	C_{D}	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact 2	2.0	Impact Load

Wood Species	EASTERN HEMLOCK- TAMARACK
Wood Grade	Select
Strong Axis Length, L1	Structural
Weak Axis Length, L2	15 FT
Narrow Width, d2	5 FT
Wide Width, d1	4 IN
LoadTvpe	10 IN

NDS Supplement, Table 4A, P. 40 (PDF)

Size Factors, $\mathrm{C}_{\mathbf{F}}$						
		F_{b}		F_{t}	F_{c}	
Grades	Width (depth)	Thickness (breadth)				
		$2^{\prime \prime}$ \& 3"	4"			
	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.5	1.5	1.5	1.15	5
Select	5 "	1.4	1.4	1.4	11	
Structural,	6 "	1.3	1.3	1.3	11	
No. 1 \& Btr,	$8{ }^{\prime \prime}$	1.2	1.3	1.2	105	5
No.1, No.2,	$10^{\prime \prime}$	1.1	1.2	1.1	1.0	
No. 3	12"	1.0	1.1	1.0	1.0	
	$14^{\prime \prime}$ \& wider	0.9	1.0	0.9	0.9	
Stud	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.1	1.1	1.1	1.05	
	$5^{\prime \prime}$ \& 6"	1.0	1.0	1.0	1.0	
	8" \& wider	Use No. 3 Grade tabulated design values and size factors				
Construction, Standard	$2^{\prime \prime}, 3^{\prime \prime}, \& 4^{\prime \prime}$	1.0	1.0	1.0	1.0	
Utility	4"	1.0	1.0	1.0	1.0	
	$2^{\prime \prime}$ \& 3"	0.4	-	0.4	0.6	

Q5: Factored Allowable Modulus of Elasticity (E'min)

E'min $=\operatorname{Emin} x\left(C_{M} \times C_{t} \times C_{i} \times C_{T}\right)$

Given from Question:

$C_{t}=C_{i}=1$
(Don't need to consider C_{T} since its for trusses)

$\mathrm{F}_{\mathrm{cl}}=\mathrm{F}_{\mathrm{c} \perp}$	x	-	C_{M}	C_{4}	-	-	-	Ci_{i}	-	-	-	$\mathrm{Cb}_{\text {b }}$	K_{F}	ϕ_{c}	λ
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}$	x	$\mathrm{Cb}_{\text {d }}$	C_{M}	C_{4}	-	C_{F}	-	Ci_{i}	-	CP_{P}	-	-	K_{F}	¢	λ
$\mathrm{E}^{\prime}=\mathrm{E}$	x	-	C_{M}	C_{4}	\cdot	\cdot	\cdot	C_{i}	\cdot	-	-	-	-	-	-
$\mathrm{E}_{\text {min }}{ }^{\prime}=\mathrm{E}_{\text {min }}$	x	-	C_{M}	C_{4}	-		-	Ci_{i}	-	\cdot	$\mathrm{C}_{\text {T }}$	-	K_{F}	\$	-

For C_{M}, Check if M.C. $>19 \%$
If yes, $\mathrm{C}_{\mathrm{M}}=0.9 \quad$ NDS Code, 4.4.2, P. 43 (PDF)

If not, $C_{M}=1$
Since my M.C. $=15 \%<19 \%, C_{M}=1$

Calculation:

E'min $=440000 \times 1 \times 1 \times 1 \times 1=\underline{440000} \underline{p s i}$ $\stackrel{\uparrow}{\text { from }}{ }^{\uparrow} 2$

4.4.2 Wood Trusses

4.4.2.1 Increased chord stiffness relative to axial loads where a $2^{\prime \prime} \times 4$ " or smaller sawn lumber truss compression chord is subjected to combined flexure and axial compression under dry service condition and has $3 / 8^{\prime \prime}$ or thicker plywood sheathing nailed to the narrow face of the chord in accordance with code required roof sheathing fastener schedules (see References 32 , 33 , and 34), shall be permitted to be accounted for by multiplying the reference modulus of elasticity design value for beam and column stability, $\mathrm{E}_{\text {min }}$, by the buckling stiffness factor, C_{T}, in column stability calculations (see 3.7 and Appendix H). When $\ell_{\mathrm{c}}<96^{\prime \prime}$, C_{T} shall be calculated as follows:

$$
\mathrm{C}_{\mathrm{T}}=1+\frac{\mathrm{K}_{\mathrm{M}} \ell_{\mathrm{e}}}{\mathrm{~K}_{\mathrm{T}} \mathrm{E}}
$$

(4.4-1)

For the given dimensioned lumber column with $1 / 3$ point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = $15 \% . \mathrm{Ct}=\mathrm{Ci}=1 \cdot 0$. Assume pinned end conditions ($\mathrm{K}=1$).

Q6: Strong Axis ($x-x$) Slenderness Ratio ($\mathrm{le}_{\mathrm{x}} / \mathrm{d}_{1}$)
$\mathrm{le}_{\mathrm{x}}=\mathrm{KxL1}=1 \times 15=15 \mathrm{ft}$
$\mathrm{d}_{1}=9.25$ in (Check Table 1B to find the actual size)
Slenderness Ratio $=15 / 9.25 \times 12=\underline{\mathbf{1 9 . 4 5 9}}$

Q7: Weak Axis ($\mathrm{y}-\mathrm{y}$) Slenderness Ratio ($\mathrm{le}_{\mathrm{y}} / \mathrm{d}_{2}$)
$\mathrm{le}_{\mathrm{y}}=\mathrm{K} \times \mathrm{L} 2=1 \times 5=5 \mathrm{ft}$
$\mathrm{d}_{2}^{\mathrm{y}}=3.5$ in (Check Table 1B to find the actual size)
Slenderness Ratio $=5 / 3.5 \times 12=\underline{\mathbf{1 7 . 1 4 3}}$

For the given dimensioned lumber column with 1/3 point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = $15 \% . \mathrm{Ct}=\mathrm{Ci}=1.0$. Assume pinned end conditions (K=1).

Strong Axis Length, L1 15 FT Weak Axis Length, L2 5 FT Narrow Width, d2 4 IN
Wide Width, d1
LoadType 10 IN

NDS Supplement, Table 1B, P. 22 (PDF)

Convert Unit
Q8: Controlling Slenderness Ratio(le/d)
Compare the answer of Q6 \& Q7,
The bigger one controls,
For my situation is $\mathbf{1 9 . 4 5 9}$
Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber

Nominal Size bxd	Standard Dressed Size (S4S) bxd in. x in.	Area of Section A in. ${ }^{2}$	X-X AXIS		Y-Y AXIS		Approximate weight in pounds per linear foot (lbs/ft) of piece when density of wood equals:						
				Moment of Inertia $I_{\text {xx }}$ in.	Section Modulus S_{vy} $\mathrm{in.}^{3}$	MomentofInertia$I_{\text {vy }}$in.							
							$25 \mathrm{lbs} / \mathrm{ft}^{3}$	$30 \mathrm{lbs} / \mathrm{ft}^{3}$	$35 \mathrm{lbs} / \mathrm{ft}^{3}$	$40 \mathrm{lbs} / \mathrm{ft}^{3}$	$45 \mathrm{lbs} / \mathrm{ft}^{3}$	$50 \mathrm{lbs} / \mathrm{ff}^{3}$	
Boards ${ }^{1}$													
$\begin{aligned} & 3 \times 14 \\ & 3 \times 16 \end{aligned}$	$13-1 / 4$ 33.13 $15-1 / 4$ 38.13		73.15	484.6	13.80	,	-	$\checkmark 6.901$	~.	\cdots	\cdots	-.	
			17.25			5.751	8.051		9.201	10.35	11.50		
			96.90	738.9	15.89	19.86	6.619	7.943	9.266	10.59	11.91	13.24	
4×4	3-1/2 ${ }^{\text {3-1/2 }}$	12.25		7.15	12.51	7.146	12.51	2.127	2.552	2.977	3.403	3.828	4.253
4×5	$3-1 / 2$ / 4-1/2	15.75	11.81	26.58	9.188	16.08	2.734	3.281	3.828	4.375	4.922	5.469	
4×6	3-1/2, 5-1/2	19.25	17.65	48.53	11.23	19.65	3.342	4.010	4.679	5.347	6.016	6.684	
4×8	3-1/2/7-1/4	25.38	30.66	111.1	14.80	25.90	4.405	5.286	6.168	7.049	7.930	8.811	
4×10	3-1/2 \times 9-1/4	32.38	49.91	230.8	18.89	33.05	5.621	6.745	7.869	8.993	10.12	11.24	
4×12	3-1/2 $\times 11-1 / 4$	39.38	73.83	415.3	22.97	40.20	6.836	8.203	9.570	10.94	12.30	13.67	
4×14	3-1/2 $\times 13-1 / 4$	46.38	102.41	678.5	27.05	47.34	8.051	9.661	11.27	12.88	14.49	16.10	
4×16	$3-1 / 2 \times 15-1 / 4$	53.38	135.66	1034	31.14	54.49	9.266	11.12	12.97	14.83	16.68	18.53	

Q9: Critical Buckling Design Value for Compression (F_{cE})

Formula:
$\mathrm{F}_{\mathrm{cE}}=\left(0.822 \times \mathrm{E}^{\prime} \min \right) /(\mathrm{le} / \mathrm{d})^{2}$

Calculation:
$\mathrm{F}_{\mathrm{cE}}=(0.822 \times 440000) /(19.459)^{2}=\underline{955.131} \mathbf{p s i}$

$F_{c E}=\frac{0.822 E_{\min }^{\prime}}{\left(\frac{l_{e}}{d}\right)^{2}}$

Q10: Reference Compression Design Value (Fc^{*})

Formula:
$\mathrm{Fc}^{*}=\mathrm{Fc} \times\left(\mathrm{C}_{\mathrm{D}} \times \mathrm{C}_{\mathrm{M}} \times \mathrm{C}_{\mathrm{t}} \times \mathrm{C}_{\mathrm{F}} \times \mathrm{C}_{\mathrm{i}}\right)$
Given from question:
$C_{t}=C_{i}=1$
Get C_{F} from Q3, C_{D} from Q4
For C_{M}, first check if M.C. $>19 \%$
If not, $C_{M}=1$
If yes, then check if $\left(\mathrm{Fc} \times \mathrm{C}_{\mathrm{F}}\right)<=750$ psi.
If yes $\mathrm{C}_{\mathrm{M}}=1$,
If not, $C_{M}=0.8$
Since my M.C. $=15 \%<19 \%, C_{M}=1$

Calculation:

$$
\mathrm{Fc}^{*}=1200 \times(0.9 \times 1 \times 1 \times 1 \times 1)=\underline{1080} \mathbf{p s i}
$$

$$
\begin{gathered}
\uparrow \\
\text { from Q1 }
\end{gathered}
$$

$\mathrm{r}_{\mathrm{t}}=\mathrm{r}_{\mathrm{t}}$	x	$L_{\text {d }}$	${ }^{\text {c M }}$	L_{1}	-	$L_{\text {F }}$	-	L_{i}	-	-	-	-	2.10	0.80	n
$\mathrm{F}_{\mathrm{v}}{ }^{\prime}=\mathrm{F}_{\mathrm{v}}$	x	$\mathrm{C}_{\text {D }}$	Cm_{m}	$\mathrm{C}_{\text {t }}$	-	-	-	C_{i}	-	-	-	-	2.88	0.75	λ
$\mathrm{F}_{\mathrm{c}}{ }^{\prime}=\mathrm{F}_{\mathrm{c}}$	x	$C_{\text {d }}$	C_{M}	C_{t}	-	C_{F}	-	C_{1}	-	C_{P}	-	-	2.40	0.90	λ
$\mathrm{F}_{\mathrm{c} \perp}{ }^{\prime}=\mathrm{F}_{\mathrm{c} \perp}$	x	-	C_{M}	C_{t}	-	-	-	C_{1}	-	-	-	C_{b}	1.67	0.90	-
$\mathrm{E}^{\prime}=\mathrm{E}$	x	-	C_{M}	C_{t}	-	-	-	C_{i}	-	-	-	-			-

For the given dimensioned lumber column with $1 / 3$ point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = $15 \% . \mathrm{Ct}=\mathrm{Ci}=1.0$. Assume pinned end conditions ($\mathrm{K}=1$).

```
F}\mp@subsup{\textrm{c}}{\textrm{c}}{*}=\mathrm{ reference compression design value paral-
    lel to grain multiplied by all applicable ad-
    justment factors except Cp (see 2.3), psi
```


Wet Service Factor, \mathbf{C}_{M}

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, $\mathrm{C}_{\text {M }}$					
F_{b}	F_{t}	F_{v}	$\mathrm{F}_{\mathrm{c} \perp}$	F_{c}	E and $E_{\text {min }}$
0.85*	1.0	0.97	0.67	0.8**	0.9
when	${ }_{\mathrm{F})} \leq 1,$	$\begin{aligned} & \text { si, } \mathrm{C}_{\mathrm{M}}= \\ & \mathrm{i}, \mathrm{C}_{\mathrm{M}}= \end{aligned}$			

Q11: Constant for Saw Lumber (c)

$\mathrm{c}=\underline{\mathbf{0 . 8}}$

Q12: Column Stability Factor (C_{p})

First calculate $\left(\mathrm{FcE}^{2} / \mathrm{Fc}^{*}\right)$, then put it into the formula: $\quad \mathrm{C}_{\mathrm{P}}=\frac{1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}-\sqrt{\left[\frac{1+\left(\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}\right)}{2 \mathrm{c}}\right]^{2}-\frac{\mathrm{F}_{\mathrm{cE}} / \mathrm{F}_{\mathrm{c}}^{*}}{\mathrm{c}}}$
$\mathrm{FcE} / \mathrm{Fc}^{*}=955.131 / 1080=0.884$

$$
\frac{1+0.884}{1.6}-\sqrt{\left(\frac{1+0.884}{1.6}\right)^{2}-\frac{0.884}{0.8}}=0.646928 \ldots
$$

$$
\begin{aligned}
& \text { where: } \\
& \text { from Q10 } \begin{aligned}
\mathrm{F}_{\mathrm{c}}^{*}= & \text { reference compression design value paral- } \\
& \text { lel to grain multiplied by all applicable ad- } \\
& \text { justment factors except } \mathrm{C}_{\mathrm{p}}(\text { see } 2.3) \text {, } \mathrm{psi}
\end{aligned} \\
& \text { from Q9 } \begin{aligned}
\mathrm{F}_{\mathrm{cE}}= & \frac{\phi .822 \mathrm{E}_{\text {min }}^{\prime}}{\left(\ell_{\mathrm{e}} / \mathrm{d}\right)^{2}} \\
\mathrm{c}= & 0.8 \text { for sawn lumber } \\
\mathrm{c}= & 0.85 \text { for round timber poles and piles } \\
\mathrm{c}= & 0.9 \text { for structural glued laminated timber or } \\
& \text { structural composite lumber }
\end{aligned}
\end{aligned}
$$

Q13: Factored Allowable Compressive Stress ($\mathrm{F}^{\prime} \mathrm{c}$)

$\mathrm{Fc}=\mathrm{Fc}^{*} \times \mathrm{C}_{\mathrm{p}}=1080 \times 0.647=\underline{\mathbf{6 9 8 . 8 5}} \mathbf{~ p s i}$
from Q10 from Q12

Q14: Column Area (A)

Check Table 1B for the column (section) area, $\mathrm{A}=3.5 \times 9.25=\underline{\mathbf{3 2 . 3 7 5} \mathrm{in}^{2}}$

NDS Supplement, Table 1B, P. 22 (PDF)

Table 1B Section Properties of Stan

			X-X AXIS	
				Moment
Nominal	Standard	Area		Dressed
Size	of	Section	of	
b x d	Size (S4S)	Section	Modulus	Inertia
	b x d	A	S $_{\text {xx }}$	I $_{\text {xx }}$
	in. x in.	in. 2	in. 3	in. ${ }^{4}$

Boards ${ }^{1}$

3×14	$2-1 / 2 \times 13-1 / 4$	33.13	73.15	484.6
3×16	$2-1 / 2 \times 15-1 / 4$	38.13	96.90	738.9
4×4	$3-1 / 2 \times 3-1 / 2$	12.25	7.15	12.51
4×5	$3-1 / 2 \times 4-1 / 2$	15.75	11.81	26.58
4×6	$3-1 / 2 \times 5-1 / 2$	19.25	17.65	48.53
4×8	$3-1 / 2 \times 7-1 / 4$	25.38	30.66	111.1
4×10	$3-1 / 2 \times 9-1 / 4$	32.38	49.91	230.8
4×12	$3-1 / 2 \times 11-1 / 4$	39.38	73.83	415.3
4×14	$3-1 / 2 \times 13-1 / 4$	46.38	102.41	678.5
4×16	$3-1 / 2 \times 15-1 / 4$	53.38	135.66	1034

Questions?

Finally, inner peace.

Columns

Lab Session:

Goals:

1. Calculate the slenderness ratio and the critical buckling load (Pcr) for different lengths ($\mathrm{L}=6$ ", 3 ", 1 ") (Q1~Q4)
2. Calculate the ultimate crushing load (Pmax) (Q5)
3. Locate all the Pcr on the slenderness curve (Q6)

Description

This project uses observation and calculation to understand the effect of slenderness on column capacity.
Goals
To observe the buckling behavior of columns through physical modeling. To find the controlling slenderness ratio.
To calculate the critical buckling and crushing loads.

Procedure

1. For the $1 / 16^{\prime \prime} \times 1 / 4^{\prime \prime}$ basswood column provided, with $L=6^{\prime \prime}$ calculate the controlling (weak axis) slenderness ratio and Pcr using the Euler equation. Use $\mathrm{K}=1.0$.
2. Find the actual critical buckling load approximating the load with your finger.
3. Repeat the procedure for $L=3^{\prime \prime}$ and $L=1^{\prime \prime}$.
4. Calculate the slenderness and Pcr for both of these lengths
5. Calculate the ultimate crushing load based on the max compressive stress, F
6. Approximately locate P for each length on the load vs. slenderness curve shown below

