Structure II Recitation 2/2

Wood Column Analysis

Before we start ...

Today's Tasks

- 1. Homework Example (Wood Column Analysis) (15 Questions)
- 2. Lab (Columns)

<u>Reminder</u>

- 1. Preliminary report due at 2/16
- 2. Tower testing at 3/18

3. Wood Column Analysis

For the given dimensioned lumber column with 1/3 point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = 15%. Ct = Ci = 1.0. Assume pinned end conditions (K=1).

-3-

DATASET: 1 -2-

Wood Species

Wood Grade

Strong Axis Length, L1 Weak Axis Length, L2 Narrow Width, d2 Wide Width, d1 LoadType EASTERN HEMLOCK-TAMARACK Select Structural 15 FT 5 FT 4 IN 10 IN Dead Load

Analysis of Wood Columns

Data:

- Column <u>size</u>, length
- Support conditions
- Material properties F_c, E
- Load

Required:

- Pass/Fail or margin of safety
- Calculate slenderness ratio l_e/d largest ratio governs. Must be < 50
- 2. Find adjustment factors $C_D C_M C_t C_F C_i$
- 3. Calculate C_P
- 4. Determine allowable F'c by multiplying the tabulated Fc by all the above factors
- 5. Calculate the actual stress: fc = P/A
- Compare Allowable and Actual stress.
 F'c > fc passes

Q1: Tabulated Allowable Compressive Stress (Fc) Q2: Tabulated Minimum Modulus of Elasticity (Emin)

Check Table 4A: Fc = <u>1200 psi</u>, Emin = <u>440000 psi</u>

Given from Question

	EASTERN
Wood Species	HEMLOCK-
	TAMARACK
Wood Grade	Select
Wood Grade	Structural

NDS Supplement, Table 4A, P.41~(PDF)

USE WITH TABLE 4A ADJUSTMENT FACTORS

				Design va	alues in pounds p	er square inch (p	si)			Grading Rules Agency
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	
		F _b	Ft	Fv	F _{c⊥}	Fc	E	Emin	G	
EASTERN HEMLOCK-TAMAR	ACK			0.000 			!	,		· · · · ·
Select Structural		1,250	575	170	555	1,200	1,200,000	440,000		
No. 1	O" Puuider	775	350	170	555	1,000	1,100,000	400,000		
No. 2	2" & wider	575	275	170	555	825	1,100,000	400,000		
No. 3		350	150	170	555	475	900,000	330,000	0.44	NELMA
Stud	2" & wider	450	200	170	555	525	900,000	330,000	0.41	NSLB
Construction		675	300	170	555	1,050	1,000,000	370,000		
Standard	2" - 4" wide	375	175	170	555	850	900,000	330,000		
Utility		175	75	170	555	550	800,000	290,000		
EASTERN SOFTWOODS										

Given from Question

Q3: Load Duration Factor (C_D) Look at Table 2.3.2, Since my load type is Dead Load, $C_D = 0.9$

Q4: Size Factor (C_F) Look at Table 4A, $C_F = 1.0$

Table 2.3.2 Frequently Used LoadDuration Factors, Cp1

Load Duration	C _D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

Wood Species	EASTERN HEMLOCK- TAMARACK
Wood Grade	Select Structural
Strong Axis Length, L1	15 FT
Weak Axis Length, L2	5 FT
Narrow Width, d2	4 IN
Wide Width, d1	10 IN
LoadType	Dead Load

NDS Supplement, Table 4A, P.40 (PDF)

Cine	Fastana	0
Size	Factors,	UF

		once i detoris, e	r				
		F _b		Ft	Fc		
		Thickness (I	oreadth)				
Grades	Width (depth)	2" & 3"	4"				
	2", 3", & 4"	1.5	1.5	1.5	1 15		
Select	5"	1.4	1.4	1.4	1 1		
Structural,	6"	1.3	1.3	1.3	1 1		
No.1 & Btr,	8"	1.2	1.3	1.2	1.05		
No.1, No.2,	10"	1.1	1.2	1.1	1.0		
No.3	12"	1.0	1.1	1.0	1.0		
	14" & wider	0.9	1.0	0.9	0.9		
	2", 3", & 4"	1.1	1.1	1.1	1.05		
Stud	5" & 6"	1.0	1.0	1.0	1.0		
	8" & wider	Use No.3 Grade ta	abulated design v	alues and size facto	rs		
Construction, Standard	2", 3", & 4"	1.0	1.0	1.0	1.0		
Utility	4"	1.0	1.0	1.0	1.0		
	2" & 3"	0.4		0.4	0.6		

Given from Question

Q5: Factored Allowable Modulus of Elasticity (E'min)

 $E'min = Emin x (C_M x C_t x C_i x C_T)$

Given from Question: $C_t = C_i = 1$

(Don't need to consider C_T since its for trusses)

For C_M , Check if M.C. > 19% If yes, $C_M = 0.9$ If not, $C_M = 1$ Since my M.C. = 15% < 19%, $C_M = 1$

Calculation: E'min = 440000 x 1 x1 x 1 x 1 = $\frac{440000 \text{ psi}}{\text{from } Q2}$ For the given dimensioned lumber column with 1/3 point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = 15%. Ct = Ci = 1.0. Assume pinned end conditions (K=1).

$F_{c\perp} = F_{c\perp}$	x	•	См	Ct	-	-	-	Ci	-	-	-	Cb	K _F	¢c	λ
$F_c = F_c$	x	CD	См	$\mathbf{C}_{\mathbf{t}}$	-	$C_{\rm F}$	-	Ci	-	Cp	-	-	K _F	ф.	λ
E' = E	x		См	Ct	-	-	•	Ci	-		-	-	-	-	-
$E_{\min} = E_{\min}$	x	-	См	Ct			-	Ci	-	-	CT	-	K _F	φs	-

NDS Code, 4.4.2, P.43 (PDF)

4.4.2 Wood Trusses

4.4.2.1 Increased chord stiffness relative to axial loads where a 2" x 4" or smaller sawn lumber truss compression chord is subjected to combined flexure and axial compression under dry service condition and has 3/8" or thicker plywood sheathing nailed to the narrow face of the chord in accordance with code required roof sheathing fastener schedules (see References 32, 33, and 34), shall be permitted to be accounted for by multiplying the reference modulus of elasticity design value for beam and column stability, E_{min} , by the buckling stiffness factor, $C_{\rm T}$, in column stability calculations (see 3.7 and Appendix H). When $\ell_{\rm e} < 96$ ", $C_{\rm T}$ shall be calculated as follows:

$$= 1 + \frac{K_{M}\ell_{e}}{K_{T}E}$$

C-

NDS Supplement, Table 4A, P.40 (PDF)

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

	Wet Service Factors, C _M									
F_{b}	\mathbf{F}_{t}	F_{v}	$F_{c\perp}$	F_{c}	$E \mbox{ and } E_{\mbox{min}}$					
0.85*	1.0	0.97	0.67	0.8**	0.9					
		0 psi, $C_M = 1$ 0 psi, $C_M = 1.0$								

(4.4-1)

Given from Question

For the given dimensioned lumber column with 1/3 point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = 15%. Ct = Ci = 1.0. Assume pinned end conditions (K=1).

Wood Species	EASTERN HEMLOCK- TAMARACK
Wood Grade	Select Structural
Strong Axis Length, L1	15 FT
Weak Axis Length, L2	5 FT
Narrow Width, d2	4 IN
Wide Width, d1	10 IN
LoadType	Dead Load

NDS Supplement, Table 1B, P.22 (PDF)

Convert Unit

Convert Unit

Q8: Controlling Slenderness Ratio(le/d) Compare the answer of Q6 & Q7, The bigger one controls, For my situation is <u>19.459</u>

Slenderness Ratio = $5 / 3.5 \times 12 = 17.143$

Q6: Strong Axis (x-x) Slenderness Ratio (le_v/d_1)

 $d_1 = 9.25$ in (Check Table 1B to find the actual size)

Q7: Weak Axis (y-y) Slenderness Ratio (le_v/d_2)

 $d_2 = 3.5$ in (Check Table 1B to find the actual size)

Slenderness Ratio = $15 / 9.25 \times 12 = 19.459$

 $le_{-} = K \times L1 = 1 \times 15 = 15 \text{ ft}$

 $le = K \times L^2 = 1 \times 5 = 5 \text{ ft}$

Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber

2				X-)	KAXIS	Y-1	AXIS						
Nominal	Dres	dard ssed	Area of	Section	Moment	Section	Moment of	Approximate weight in pounds per linear foo of piece when density of wood equa					
Size b x d	b	(S4S) k d k in.	Section A in. ²	Modulus S _{xx} in. ³	Inertia I _{xx} in. ⁴	Modulus S _{yy} in. ³	Inertia I _{yy} in. ⁴	25 lbs/ft ³	30 lbs/ft ³	35 lbs/ft ³	40 lbs/ft ³	45 lbs/ft ³	50 lbs/ft ³
Boards ¹													
3 x 14	2-1/2 x	13-1/4	33.13	73.15	484.6	13.80	17.25	5 751	6.901	8.051	9.201	10.35	11.50
3 x 16	2-1/2 x		38.13	96.90	738.9	15.89	19.86	6.619	7.943	9.266	10.59	11.91	13.24
4 x 4	3-1/2 :	3-1/2	12.25	7.15	12.51	7.146	12.51	2.127	2.552	2.977	3.403	3.828	4.253
4 x 5	3-1/2	4-1/2	15.75	11.81	26.58	9.188	16.08	2.734	3.281	3.828	4.375	4.922	5.469
4 x 6	3-1/2	5-1/2	19.25	17.65	48.53	11.23	19.65	3.342	4.010	4.679	5.347	6.016	6.684
4 x 8	3-1/2	7-1/4	25.38	30.66	111.1	14.80	25.90	4.405	5.286	6.168	7.049	7.930	8.811
4 x 10	3-1/2 >	9-1/4	32.38	49.91	230.8	18.89	33.05	5.621	6.745	7.869	8.993	10.12	11.24
4 x 12	3-1/2 x	11-1/4	39.38	73.83	415.3	22.97	40.20	6.836	8.203	9.570	10.94	12.30	13.67
4 x 14	3-1/2 x	13-1/4	46.38	102.41	678.5	27.05	47.34	8.051	9.661	11.27	12.88	14.49	16.10
4 x 16	3-1/2 x	15-1/4	53.38	135.66	1034	31.14	54.49	9.266	11.12	12.97	14.83	16.68	18.53

Q9: Critical Buckling Design Value for Compression (F_{cE})

Formula:

$$F_{cE} = (0.822 \text{ x E'min}) / (le/d)^2$$

$$from Q2 \quad from Q8$$

Calculation:

$$F_{cE} = (0.822 \text{ x } 440000) / (19.459)^2 = 955.131 \text{ psi}$$

$$F_{cE} = \frac{0.822E'_{min}}{\left(\frac{l_e}{d}\right)^2}$$

Q10: Reference Compression Design Value (Fc*) Formula:

$$Fc^* = Fc \times (C_D \times C_M \times C_t \times C_F \times C_i)$$

Given from question: $C_t = C_i = 1$

Get C_F from Q3, C_D from Q4

For C_M , first check if M.C. > 19% If not, $C_M = 1$ If yes, then check if (Fc x C_F) <= 750 psi. If yes $C_M = 1$, If not, $C_M = 0.8$ Since my M.C. = 15% < 19%, $C_M = 1$

Calculation:

Fc* =
$$1200 \times (0.9 \times 1 \times 1 \times 1 \times 1) = 1080 \text{ psi}$$

from Q1

Given from Question

For the given dimensioned lumber column with 1/3 point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = 15%. Ct = Ci = 1.0. Assume pinned end conditions (K=1).

 F_c^* = reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_e (see 2.3), psi

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

F _b F _t F _v	F	-	
U I V	Γ _{c⊥}	F _c	E and E _{mi}
0.85* 1.0 0.97	0.67	0.8**	0.9

$F_t = F_t$	х	CD	CM	Ct	-	CF	-	Ci	-	-	-	-	2.70	0.80	λ
$F_v = F_v$	x	CD	C _M	Ct	-	-	-	Ci	-	-	-	-	2.88	0.75	λ
$\mathbf{F_c}' = \mathbf{F_c}$	x	CD	См	Ct	-	C _F	-	Ci	-	Ср	-	-	2.40	0.90	λ
$F_{c\perp} = F_{c\perp}$	х		C_{M}	Ct	-	-	-	C_i	-	-	-	$C_{\mathfrak{b}}$	1.67	0.90	-
E'=E	x	-	См	Ct	-	-	-	Ci	-	-	-	-	-	-	-

Q11: Constant for Saw Lumber (c) c = 0.8

Q12: Column Stability Factor (C_p)

First calculate (FcE/Fc*), then put it into the formula:

 $FcE/Fc^* = 955.131/1080 = 0.884$

<u>1+0.884</u> - 1.6	110.001	- <u>0.884</u> 0.8	=0.646928

 $C_{p} = \frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}} (3.7-1)$ where: F_c^{*} = reference compression design value paralfrom Q10 lel to grain multiplied by all applicable adjustment factors except C_o (see 2.3), psi $F_{cE} = \frac{0.822 E_{min}}{(2 - 1)^2}$

from Q9

c = 0.8 for sawn lumber

- c = 0.85 for round timber poles and piles
- c = 0.9 for structural glued laminated timber or structural composite lumber

Course Slides P.14

Q13: Factored Allowable Compressive Stress (F'c) F'c = Fc* x $C_p = 1080 \times 0.647 = \underline{698.85 \text{ psi}}$ from Q10 from Q12

Q14: Column Area (A) Check Table 1B for the column (section) area, $A = 3.5 \times 9.25 = 32.375 \text{ in}^2$

Q15: Maximum Allowable Axial Load Capacity (Pmax) Pmax = F'c x A = 698.85 x 32.375 = 22625.3 LBSfrom Q13 from Q14 NDS Supplement, Table 1B, P.22 (PDF)

Table 1B Section Pr	operties of Stan
---------------------	------------------

Nominal Size b x d			X-X AXIS	
	Standard Dressed Size (S4S) b x d in. x in.	Area of Section A in. ²	Section Modulus S _{xx} in. ³	Moment of Inertia I _{xx} in. ⁴
Boards ¹		57 		
¥ 0.15	5-05 A 11-07	60.1V	02.10	200.0
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034

Finally, inner peace.

Lab Session:

Goals:

1. Calculate the slenderness ratio and the critical buckling load (Pcr) for different lengths (L = 6", 3", 1") (Q1~Q4)

2. Calculate the ultimate crushing load (Pmax) (Q5)

3. Locate all the Pcr on the slenderness curve (Q6)

Columns

Description

This project uses observation and calculation to understand the effect of slenderness on column capacity.

Goals

To observe the buckling behavior of columns through physical modeling.

- To find the controlling slenderness ratio.
- To calculate the critical buckling and crushing loads.

Procedure

- 1. For the 1/16"x1/4" basswood column provided, with L=6" calculate the controlling (weak axis) slenderness ratio and Pcr using the Euler equation. Use K=1.0.
- 2. Find the actual critical buckling load approximating the load with your finger.
- 3. Repeat the procedure for L=3" and L=1".
- 4. Calculate the slenderness and Pcr for both of these lengths.
- 5. Calculate the ultimate crushing load based on the max compressive stress, Fc.
- 6. Approximately locate P for each length on the load vs. slenderness curve shown below

