Wood Columns 2/2

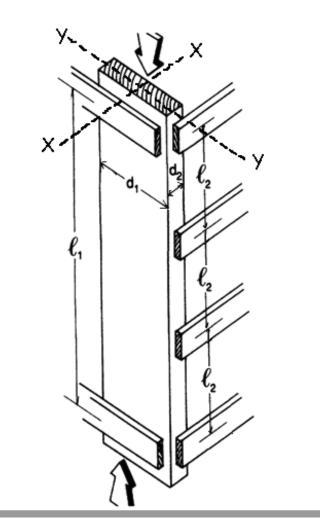
HW - Wood Column Analysis

Tower Project Intro

Lab - Columns

Structure II Section 004

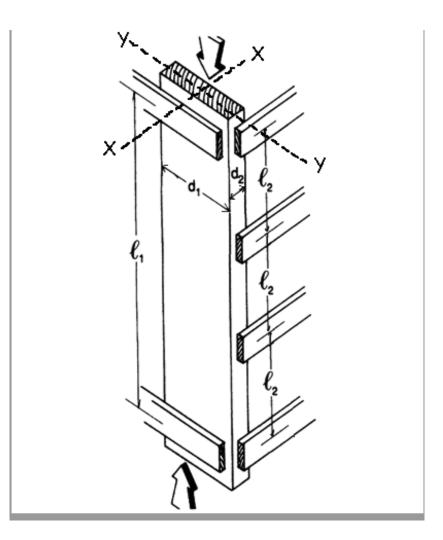
Yifan Ma yifanma@umich.edu



HW - Wood Column Analysis

3. Wood Column Analysis

For the given dimensioned lumber column with 1/3 point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = 15%. Ct = Ci = 1.0. Assume pinned end conditions (K=1).


DATASET: 1 -23-	
Wood Species	WESTERN
	CEDARS
Wood Grade	No.1
Strong Axis Length, L1	8 FT
Weak Axis Length, L2	2.6666666667 FT
Narrow Width, d2	4 IN
Wide Width, d1	10 IN
LoadType	Wind Load

Given: certain wood type bracing type member size load type

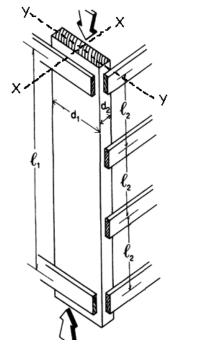
Goal: load capacity?

HW - Wood Column Analysis

Given:

certain wood type bracing type member size load type

Goal: load capacity?


- 1. Calculate slenderness ratio le/d
 - largest ratio governs. Must be < 50
- 2. Find adjustment factors

CD CM Ct CF Ci

- 3. Calculate CP(column stability factor)
- 4. Determine F'c = tabulated Fc * factors
- 5. Set actual stress = allowable, fc=F'c (limitation)
- 6. Find the maximum allowable load Pmax=F'c / A

For the given dimensioned lumber column with 1/3 point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = 15%. Ct = Ci = 1.0. Assume pinned end conditions (K=1).

DATASET: 1 -23-	
Wood Species WEST CED	
Wood Grade	No.1
Strong Axis Length, L1	8 FT
Weak Axis Length, L2 2.666666	6667 FT
Narrow Width, d2	4 IN
Wide Width, d1	10 IN
LoadType Wind I	_oad

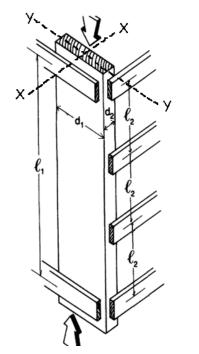
1. Tabulated Allow. Compressive Stress, Fc= 825 psi

2. Tabulated Minimum Modulus of Elasticity, Emin= 370000 psi

NDS Supplement table 4A

Table 4A (Cont.)

Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick)^{1,2,3}


(All species except Southern Pine — see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallei to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus d	Modulus of Elasticity		Grading Rules Agency
		Fb	Ft	Fv	F _{c⊥}	Fc	E	Emin	G	
WESTERN CEDARS										
Select Structural No. 1		1,000 725	600 425	155 155	425 425	1,000	1,100,000 1,000,000	400,000		
No. 2	2" & wider	700	425	155	425	650	1,000,000	370,000		
No. 3		400	250	155	425	375	900,000	330,000	0.36	WCLIB
Stud	2" & wider	550	325	155	425	400	900,000	330,000	0.50	WWPA
Construction		800	475	155	425	850	900,000	00 330,000		
Standard	2" - 4" wide	450	275	155	425	650	800,000	290,000		
Utility		225	125	155	425	425	800,000	290,000		

For the given dimensioned lumber column with 1/3 point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = 15%. Ct = Ci = 1.0. Assume pinned end conditions (K=1).

DATASET: 1 -23-	
Wood Species	WESTERN CEDARS
Wood Grade	No.1
Strong Axis Length, L1	8 FT
Weak Axis Length, L2	2.666666667 FT
Narrow Width, d2	_4 IN
Wide Width, d1	10 IN
Loadlype	Wind Load

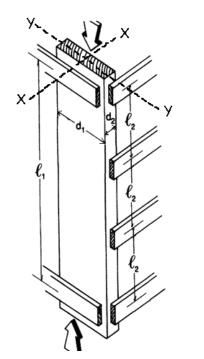
3. Load duration Factor, CD

CD = 1.6

4. Size Factor, CF

$CF_c = 1.0$

Table 2.3.2Frequently Used Load
Duration Factors, C_{D}^{-1}


0.9	Dead Load
1.0	Occupancy Live Load
1.15	Snow Load
1.25	Construction Load
1.6	Wind/Earthquake Load
2.0	Impact Load
	1.0 1.15 1.25 1.6

		Size Factors,	C _F		
		F	b	Ft	F _c
		Thickness	(breadth)		NDS
Grades	Width (depth)	2" & 3"	2" & 3" 4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated design	values and size facto	ors
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	
	2" & 3"	0.4	_	0.4	0.6

IDS Supplement table 4A

For the given dimensioned lumber column with 1/3 point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = 15%. Ct = Ci = 1.0. Assume pinned end conditions (K=1).

DATASET: 1 -23-	
Wood Species	WESTERN CEDARS
Wood Grade	No.1
Strong Axis Length, L1	8 FT
Weak Axis Length, L2	2.666666667 FT
Narrow Width, d2	4 IN
Wide Width, d1	10 IN
LoadType	Wind Load

5. Factored Allow. Modulus of Elasticity, E'min

		ASD only		ASD and LRFD											LRFD only			
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor			
$F_b' = F_b$	x	CD	См	Ct	CL	C _F	C _{fu}	Ci	Cr	-	-	-	K _F	фь	λ			
$F_t = F_t$	x	CD	См	Ct	-	$C_{\rm F}$	-	Ci	-	-	-	-	K _F	φ _t	λ			
$\mathbf{F_v}' = \mathbf{F_v}$	x	CD	См	Ct	-	-	-	Ci	-	-	-	-	K _F	$\boldsymbol{\varphi}_v$	λ			
$F_{c\perp} = F_{c\perp}$	x	-	См	Ct	-	-	-	C_i	-	-	-	Cb	K _F	φ _c	λ			
$F_c = F_c$	x	CD	См	Ct	-	$C_{\rm F}$	-	C_i	-	CP	-	-	K _F	фс	λ			
E'=E	x	-	См	C_t	-	-	-	Ci	-	-	-	-	-	-	-			
$E_{\min}' = E_{\min}$	x	-	См	Ct	-	-	-	Ci	-	-	C_{T}) -	K _F	$\phi_{\!s}$	-			

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

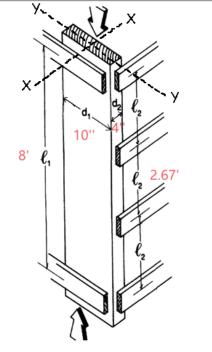
Wet Service Factor, C_M

When dimension humber is used where moisture content will exceed 19% for an extended time period, design values shall be multipled by the appropriate wet service factors from the following table:

Wet Service Factors, C _M											
F _b	\mathbf{F}_{t}	F_{v}	$F_{c\perp}$	F _c	$E \text{ and } E_{\min}$						
0.85*	1.0	0.97	0.67	0.8**	0.9						
* when (F_b)	$(C_F) \le 1,15$	0 psi, $C_M = 1$.0								

** when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$

4.4.2 Wood Trusses


4.4.2.1 Increased chord stiffness relative to axial loads where a 2" x 4" or smaller sawn lumber truss compression chord is subjected to combined flexure and axial compression under dry service condition and has 3/8" or thicker plywood sheathing nailed to the narrow face of the chord in accordance with code required roof sheathing fastener schedules (see References 32, 33, and 34), shall be permitted to be accounted for by multiplying the reference modulus of elasticity design value for beam and column stability, E_{min} , by the buckling stiffness factor, C_T , in column stability calculations (see 3.7 and Appendix H). When $\ell_e < 96$ ", C_T shall be calculated as follows:

$$C_{\tau} = 1 + \frac{K_{\rm M} \ell_{\rm e}}{K_{\rm T} E}$$
(4.4-1)

E'min = Emin * (CM * Ct * Ci * CT) = 370000 x 1= 370000 psi

For the given dimensioned lumber column with 1/3 point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = 15%. Ct = Ci = 1.0. Assume pinned end conditions (K=1).

DATASET: 1 -23-	
Wood Species	WESTERN CEDARS
Wood Grade	No.1
Strong Axis Length, L1	8 FT
Weak Axis Length, L2	2.666666667 FT
Narrow Width, d2	4 IN
Wide Width, d1	10 IN
LoadType	Wind Load

6. Strong Axis(x-x) Slenderness Ratio, lex/d1

use actual member size lex/d1 = 8*12/9.25 = 10.38

7. Weak Axis(y-y) Slenderness Ratio, ley/d2

use actual member size ley/d2 = 2.67*12/3.5 = 9.15

8. Controlling Slenderness Ratio, le/d

The larger ratio will govern 10.38 > 9.15 So le/d = 10.38

			¥.)	(AXIS	V-V	AXIS	1					
	Standard	Area	X-7	Moment		Moment	Appro	ximate w	eight in po	ounds per	linear foo	t (lbs/ft)
Nominal	Dressed	of	Section	of	Section	of		of piec	ce when d	ensity of	wood equ	als:
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia						
b x d	bxd	A	Sxx	I _{xx}	S _{yy}	l _{yy}	25 lbs/ft [°]	30 lbs/ft ³	35 lbs/ft	40 lbs/ft ³	45 lbs/ft ³	50 lbs/ft
	in. x in.	in.2	in. ³	in.4	in. ³	in.4						
Boards ¹												
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088	0.326	0.391	0.456	0.521	0.586	0.651
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123	0.456	0.547	0.638	0.729	0.820	0.911
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193	0.716	0.859	1.003	1.146	1.289	1.432
1 x 8	3/4 x 7-1/4	5.438	6.570	23.82	0.680	0.255	0.944	1.133	1.322	1.510	1.699	1.888
1 x 10	3/4 x 9-1/4	6.938	10.70	49.47	0.867	0.325	1.204	1.445	1.686	1.927	2.168	2.409
1 x 12	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.396	1.465	1.758	2.051	2.344	2.637	2.930
Dimensio	n Lumber (see N	IDS 4.1.3.2	2) and Dec	king (see	NDS 4.1.3							
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703	0.651	0.781	0.911	1.042	1.172	1.302
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984	0.911	1.094	1.276	1.458	1.641	1.823
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266	1.172	1.406	1.641	1.875	2.109	2.344
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547	1.432	1.719	2.005	2.292	2.578	2.865
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039	1.888	2.266	2.643	3.021	3.398	3.776
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602	2.409	2.891	3.372	3.854	4.336	4.818
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164	2.930	3.516	4.102	4.688	5.273	5.859
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727	3.451	4.141	4.831	5.521	6.211	6.901
3 x 4	2-1/2 x 3-1/2	8.75	5.10	8.932	3.646	4.557	1.519	1.823	2.127	2.431	2.734	3.038
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859	1.953	2.344	2.734	3.125	3.516	3.906
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161	2.387	2.865	3.342	3.819	4.297	4.774
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440	3.147	3.776	4.405	5.035	5.664	6.293
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04	4.015	4.818	5.621	6.424	7.227	8.030
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65	4.883	5.859	6.836	7.813	8.789	9.766
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25	5.751	6.901	8.051	9.201	10.35	11.50
3 x 16	2-1/2 x 15-1/4	38.13	96.90	738.9	15.89	19.86	6.619	7.943	9.266	10.59	11.91	13.24
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51	2.127	2.552	2.977	3.403	3.828	4.253
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08	2.734	3.281	3.828	4.375	4.922	5.469
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65	3.342	4.010	4.679	5.347	6.016	6.684
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90	4.405	5.286	6.168	7.049	7.930	8.811
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05	5.621	6.745	7.869	8.993	10.12	11.24
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20	6.836	8.203	9.570	10.94	12.30	13.67
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34	8.051	9.661	11.27	12.88	14.49	16.10
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49	9.266	11.12	12.97	14.83	16.68	18.53

Section Properties of Standard Dressed (S4S) Sawn Lumber

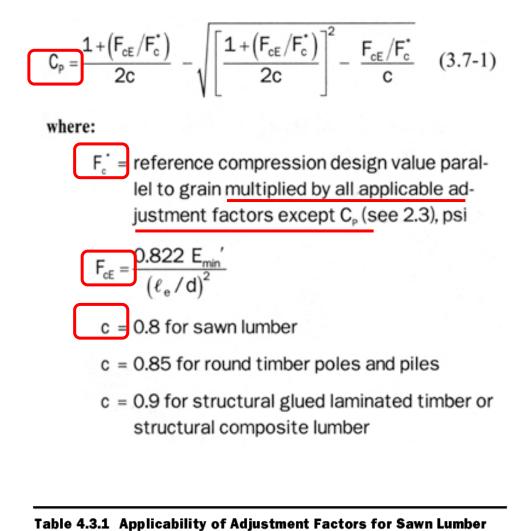
Table 1B

9. Critical Buckling Design Value for Compression, FcE

FcE= 0.822*Emin'/(le/d)² =0.822* 370000/10.38² =2823.67 psi

10. Reference Compression Design Value, Fc*

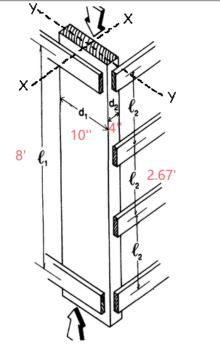
Fc* = Fc·(CD·CM·Ct·CF·Ci) = 825*1.6*1.0 = 1320 psi


11. Constant for Sawn Lumber, c

c = 0.8

12. Column Stability Factor, CP

use precise FcE


$$\mathsf{CP} = \frac{1 + (\frac{2823.67}{1320})}{2*0.8} - \sqrt[2]{\left[\frac{1 + (\frac{2823.67}{1320})}{2*0.8}\right]^2} - \frac{\frac{2823.67}{1320}}{0.8} = 0.88$$

				-		_									
$F_c = F_c$	x	CD	См	C_t	-	C_F	-	Ci	-	CP	-	-	K _F	φ _e	λ

For the given dimensioned lumber column with 1/3 point weak axis bracing, determine the maximum load capacity of the given load type. Moisture Content = 15%. Ct = Ci = 1.0. Assume pinned end conditions (K=1).

DATASET: 1 -23-	
Wood Species	WESTERN CEDARS
Wood Grade	No.1
Strong Axis Length, L1	8 FT
Weak Axis Length, L2	2.666666667 FT
Narrow Width, d2	4 IN
Wide Width, d1	10 IN
LoadType	Wind Load

13. Factored Allow. Compressive Stress, F'c(PSI)

F'c = Fc*(CD*CM*Ct*CF*Ci*CP) = 825*1.6*1.0*0.88 = 1161.6 psi

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

$F_c = F_c$	x Cr	См	C_t	_	C_F	-	Ci	_	Cp	-	-	K _F	φ _c	λ
					_				_					

14. Column Area, A	

 $A = 32.38 \text{ in}^2$

Section Properties of Standard Dressed (545) Sawn Lumber	
	_

			X-X	(AXIS	Y-Y	Y AXIS						
	Standard	Area		Moment		Moment	Appro	oximate w				
Nominal		of	Section	of	Section	of		of pie	ce when d	ensity of	wood equ	als:
Size	Size (S4S)	Section	Modulus	Inertia	Modulus							
b x d	bxd	A	Sxx	Ixx	Syy	· · yy	25 lbs/ft	30 lbs/ft	35 lbs/ft	40 lbs/ft	45 lbs/ft	50 lbs/ft ³
	in. x in.	in. ²	in. ³	in.4	in. ³	in.4						
Boards ¹												
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51	2.127	2.552	2.977	3.403	3.828	4.253
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08	2.734	3.281	3.828	4.375	4.922	5.469
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65	3.342	4.010	4.679	5.347	6.016	6.684
4 x 8	3-1/2 x 7-1/4	20.00	30.66	111.1	14.80	25.90	4.405	5.286	6.168	7.049	7.930	8.811
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05	5.621	6.745	7.869	8.993	10.12	11.24
4 x 12	3-1/2 x 11-1/4	00.00	73.83	415.3	22.97	40.20	6.836	8.203	9.570	10.94	12.30	13.67
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34	8.051	9.661	11.27	12.88	14.49	16.10
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49	9.266	11.12	12.97	14.83	16.68	18.53


15. Maximum Allowable Axial Load Capacity, Pmax

Pmax = F'c * A = 1161.6*32.38 = 37612.61 lbs

Timeline

	TOPIC	Text Reading	PROBLEMS (due dates online)
JAN 10	Course Intro	Onouye, Schodek	
JAN 12	Wood Properties	NDS	
JAN 15 JAN 17	Martin Luther King Day **** No Wood Beam Analysis	Class **** Martin Luther King Schodek 6.4.2	Day **** No Class
JAN 19	Recitation [1-Wood Beams]		
14.51.00	Ward Bases Desire	0	1. Wood Beam Analysis
JAN 22 JAN 24 JAN 26	Wood Beam Design Column Buckling Recitation	Onouye 8 Onouye 9.1-9.2 & 9.4, Scho	dek 7.4.3
5AN 20	Recitation		2. Wood Beam Design
JAN 29 JAN 31	Wood Columns - Tower Intro Cross Laminated Timbers	NDS CLT Handbook	
FEB 2	Recitation [2-Wood Columns]		
			3. Wood Column Analysis
FEB 5 FEB 7	Steel Properties Steel Beam Analysis	AISC, Onouye 8.7 Schodek 6.4.3	
FEB 9	Recitation [3-Steel Beams]	Schouek 0.4.5	
			4 Steel Beam Analysis
FEB 12 FEB 14	Steel Beam Design Steel Column Analysis	Schodek 6.4.3 Onouve 9.3, Schodek 7.4.4	
FEB 16	Recitation [4-Steel Columns]	Unouve 9.5, Schodek 7.4.4	Prelim. Tower Report Due
12010	recondition [+ oteer oordinins]		5. Steel Beam Design
FEB 19	Steel Column Design	Onouye 9.3, Schodek 7.4.4	-
FEB 21 FEB 32	"Skyscrapers" David Macaulay Recitation	video	
FEB 32	Recitation		6. Steel Column Analysis
FEB 26 FEB 27 MAR 1	WINTER RECESS **** NO CL/ WINTER RECESS **** NO CL/ WINTER RECESS **** NO CL/	ASS **** WINTER RECESS *	*** NO CLASS ****
MAR 4	Continuous Beams	I. Engel Ch. 17, Schodek 8	
MAR 6	Gerber Beams	Schodek 8.4.4	
MAR 8	Recitation [5-Continuous Bear	nsj	7. Three Moment Theorem
MAR 11	Intro to Concrete - PCA video.		
MAR 13	Concrete Beams	Schodek 6.4.4 - 6.4.6	
MAR 15	Recitation		
MAR 18			
MAR 20	Tower Testing **** Tower Tes	ting **** Tower Testing ****	Tower Testing ****
	Concrete Beams	I. Engel Ch.15	Tower Testing ****
MAR 22		I. Engel Ch.15	
	Concrete Beams	I. Engel Ch.15	Tower Testing **** 8. Concrete Beam Analysis
MAR 22 MAR 25 MAR 27	Concrete Beams Recitation [6-Stress vs Strain] Concrete Beams Concrete Columns	I. Engel Ch.15 Schodek 7.4.5	
MAR 22 MAR 25	Concrete Beams Recitation [6-Stress vs Strain] Concrete Beams	I. Engel Ch.15 Schodek 7.4.5	8. Concrete Beam Analysis
MAR 22 MAR 25 MAR 27	Concrete Beams Recitation [6-Stress vs Strain] Concrete Beams Concrete Columns Recitation [7-Concrete Reinfor Composite Sections	I. Engel Ch.15 Schodek 7.4.5	
MAR 22 MAR 25 MAR 27 MAR 29 APR 1 APR 3	Concrete Beams Recitation [6-Stress vs Strain] Concrete Beams Concrete Columns Recitation [7-Concrete Reinfor Composite Sections Masonry Walls	I. Engel Ch.15 Schodek 7.4.5 rcing] TMS 402 TMS 402	8. Concrete Beam Analysis
MAR 22 MAR 25 MAR 27 MAR 29 APR 1 APR 3 APR 5	Concrete Beams Recitation [6-Stress vs Strain] Concrete Beams Concrete Columns Recitation [7-Concrete Reinfor Composite Sections Masonry Walls Recitation [8-Composite Section	I. Engel Ch.15 Schodek 7.4.5 rcing] TMS 402 TMS 402 ons]	8. Concrete Beam Analysis
MAR 22 MAR 25 MAR 27 MAR 29 APR 1 APR 3 APR 5 APR 8	Concrete Beams Recitation [6-Stress vs Strain] Concrete Beams Concrete Columns Recitation [7-Concrete Reinfor Composite Sections Masonry Walls Recitation [8-Composite Secti Masonry Walls	I. Engel Ch.15 Schodek 7.4.5 rcing] TMS 402 TMS 402 ons] TMS 402	8. Concrete Beam Analysis 9. Concrete Beam Design
MAR 22 MAR 25 MAR 27 MAR 29 APR 1 APR 3 APR 5	Concrete Beams Recitation [6-Stress vs Strain] Concrete Beams Concrete Columns Recitation [7-Concrete Reinfor Composite Sections Masonry Walls Recitation [8-Composite Section	I. Engel Ch.15 Schodek 7.4.5 rcing] TMS 402 TMS 402 ons] TMS 402 Schodek 12	8. Concrete Beam Analysis 9. Concrete Beam Design 10. Composite Sections
MAR 22 MAR 25 MAR 27 MAR 29 APR 1 APR 3 APR 5 APR 8 APR 10	Concrete Beams Recitation [6-Stress vs Strain] Concrete Beams Concrete Columns Recitation [7-Concrete Reinfor Composite Sections Masonry Walls Recitation [8-Composite Secti Masonry Walls Shells and Vaults	I. Engel Ch.15 Schodek 7.4.5 rcing] TMS 402 TMS 402 ons] TMS 402 Schodek 12	8. Concrete Beam Analysis 9. Concrete Beam Design
MAR 22 MAR 25 MAR 27 MAR 29 APR 1 APR 3 APR 3 APR 5 APR 10 APR 12 APR 15 APR 17	Concrete Beams Recitation [6-Stress vs Strain] Concrete Beams Concrete Columns Recitation [7-Concrete Reinfor Composite Sections Masonry Walls Recitation [8-Composite Secti Masonry Walls Shells and Vaults Recitation [9-Lateral Stability] Combined Stress Combined Stress	I. Engel Ch.15 Schodek 7.4.5 rcing] TMS 402 TMS 402 ons] TMS 402 Schodek 12 Final Tower Report Due I. Engel Ch. 19 I. Engel Ch. 19 I. Engel Ch. 19	8. Concrete Beam Analysis 9. Concrete Beam Design 10. Composite Sections
MAR 22 MAR 25 MAR 27 MAR 29 APR 1 APR 3 APR 3 APR 5 APR 8 APR 10 APR 12 APR 15	Concrete Beams Recitation [6-Stress vs Strain] Concrete Beams Concrete Columns Recitation [7-Concrete Reinfor Composite Sections Masonry Walls Recitation [8-Composite Secti Masonry Walls Shells and Vaults Recitation [9-Lateral Stability] Combined Stress	I. Engel Ch.15 Schodek 7.4.5 rcing] TMS 402 TMS 402 ons] TMS 402 Schodek 12 Final Tower Report Due I. Engel Ch. 19 I. Engel Ch. 19 I. Engel Ch. 19	 8. Concrete Beam Analysis 9. Concrete Beam Design 10. Composite Sections 11. Masonry Walls
MAR 22 MAR 25 MAR 27 MAR 29 APR 1 APR 3 APR 3 APR 5 APR 10 APR 12 APR 15 APR 17	Concrete Beams Recitation [6-Stress vs Strain] Concrete Beams Concrete Columns Recitation [7-Concrete Reinfor Composite Sections Masonry Walls Recitation [8-Composite Secti Masonry Walls Shells and Vaults Recitation [9-Lateral Stability] Combined Stress Combined Stress	I. Engel Ch.15 Schodek 7.4.5 rcing] TMS 402 TMS 402 ons] TMS 402 Schodek 12 Final Tower Report Due I. Engel Ch. 19 I. Engel Ch. 19 I. Engel Ch. 19	8. Concrete Beam Analysis 9. Concrete Beam Design 10. Composite Sections

Resources

Dr. Frame Tutorials ₫ STAAD example

Videos of Old Tower Tests

ন্দ্র

2022 Lectures 🛃

811	1.1	1.1	10

	Lectures	Video w/Quiz	Video	Slides	Notes	
0	Course Intro		NP4		-	
2	Wood Properties	NP4			1	
7	Wood Beam Analysis		MP4	1	-	
2	Wood Beam Design	NP4	MP4			
4	Wood Column Analysis	NP4	MP4	1	-	
9	Wood Column Design		MP4	1	1	
9	Tower Project		MP4	-		
1	Wood - CLT					
	Properties of Steel					
	Steel Beam Analysis					

Resources

3044	3047	_
	.3 lb	_
		_
-125.6 18	-125.0 lb	_
3041 0	.5 lb 3048	_
125.8.1	-125.0 lb	_
	-125.015	-
3039	.5 lb 3050	-
-125 8 1	-125.0 lb	-
120.010		-
3037 🔊 0	13032	-
-125.6 1	-124.9 lb	-
		-
3035	.5 lb 3054	-
	-124.9 lb	_
	6 lb (3056	_
3033 0	1.6 ID	1
-125.6 lb	-124.9 lb	
	5.11 0.2050	
3031	.5 lb @3058	
-125.6 lb	-124.9 lb	
3029 0-0	15 lb	
3023000	.5 lb 3060	
-125.6 lb	-124.9 lb	
3028	.3 lb	

Criteria

& Procedure

Criteria

- The tower is to be made of wood. Either linear wood (sticks) or wood panels (sheets) can be used. Glue can be used to connect the elements. Gusset plates at the joints are allowed and can also be glued. But **no steel pins** or fasteners may be used.
- Wood: any species. maximum cross-sectional dimension = 1/4".
- · NO paper, mylar or plastic or string or dental floss.
- If a member is made by laminating multiple pieces together, the maximum cross-sectional dimension or thickness still cannot exceed 1/4".
- The height of the tower = 48".
- The tower must hold at least 50 lbs.
- The entire tower can weigh no more than 4 oz.
- The top of the tower must be loadable. The weights will be stacked on top of the tower, but you
 may optionally use a loose piece of MDF or plywood as a tray under the weights. (It will not be
 counted in either weight or load)
- Towers will be graded on their low weight, high load-carrying capacity, and the load/weight ratio. The evaluation formula is:

(4/weight in OZ) + (load in LBS/50) + (load LBS/weight OZ)x1.5

The score will be normalized to a range of 50 to 100. It is used together with report scores to
assess your project (a detailed evaluation form is given separately).

Procedure

- 1. Develop a structural concept for a tower meeting the above criteria.
- 2. Analyze the design concept with either hand calculations or a computer program (e.g. Dr. Frame)
- 3. Determine the capacity of the major members and of the overall tower (total capacity in LBS)
- 4. Estimate your expected score using the formula above.
- 5. Write the preliminary report.
- 6. Construct the structural model.
- Test the model. 5-pound steel bars will be placed on top of the model, until the model fails. (bar size: 1 ½" x 2" x 5 13/16").
- 8. Produce final report documenting requirements and process. See also score sheet.

Resources

Analysis

Use NDS approach

Find load P and stress F'c for each member

Use 1.0 for all factors except C_p

where:

Analysis - the report should include the following:

- Choose wood type and stress properties. Either use values below for typical model grade Basswood or use values in the NDS or find test values online. Indicate in the report which values you choose. Determine the cross-sectional area of each member. Find the axial force P and the allowable stress F'c. The force P can be determined either by a hand calculated truss analysis or as a second order analysis in Dr. Frame or STAAD.Pro. The stress F'c should be found using the NDS equations for CP and F'c. Other NDS stress adjustment factors (CD, CM, CL, CF and CI) can be taken equal to 1.0. Size members based on the predicted load, P and the allowable stress F'c. Target (or predict) some total capacity load for the tower. A minimum of 50 LBS is required. Then size the members based on the
- force in each member · Predict the total weight of the tower. Provide a table with each member type showing, length, section and weight for each. Make an estimate of the weight added by glue joints and/or gusset plates. The total weight should be under 4 OZ.
 - Predict Capacity. Predict the ultimate capacity in pounds that the entire tower can carry based on the actual cross-sections chosen. Produce a utilization table to show for each member type (e.g. main vertical, horizontal tie, diagonal brace) the utilization ratio fc/F'c based on the predicted total capacity load. This ratio should be below 1.0 for all members.

 Calculate the buckling capacity of the tower as a whole. This is done by treating the tower as one column loaded at the top, made up in cross section of multiple columns. Show the moment of inertia of the tower cross-section, and use it to calculate the critical buckling load using the Euler equation. An example of this calculation is given in the slides from the class lecture. The ultimate capacity is the lower of the two capacities (critical member or tower as a whole).

P

F'

Analysis Capacity Design $C_{p} = \frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right]^{2}} - \frac{F_{cE}/F_{c}^{*}}{c} \quad (3.7-1)$ $f_{a} = \frac{P}{M} \leq F'_{a}$ $P = F'_{c} A$ A = -F. = reference compression design value paral-Properties of Basswood: lel to grain multiplied by all applicable adjustment factors except C, (see 2.3), psi Density (oven dry) 20 pcf * $F_{ee} = \frac{0.822 E_{min}}{100}$ E (buckling) 1,650,000 psi ** F (Compression || to grain) 4745 psi * F (Compression ⊥ to grain) 377 psi * c = 0.8 for sawn lumber F (Tension || to grain) 4500 psi (estimate) c = 0.85 for round timber poles and piles F (Tension ⊥ to grain) 348 psi * c = 0.9 for structural glued laminated timber or www.matweb.com F (Shear || to grain) 986 psi * structural composite lumber tested by PvB F (Flexure) 5900 psi * University of Michigan, TCAUP Structures II Slide 4 of 17

PREDICATE CAPACITY

Vertical Member Buckling Capacity;

If
$$K = 1$$
 then $\frac{le}{d} = \frac{l.K}{d} = \frac{(6)^{*}}{0.5^{*}} = 24 < 50$
 $Fce = \frac{0.822 Emin}{(le/d)} = \frac{0.822 \times 1650000}{24^{2}} = 2355 PSI$
 $Fc *= Fc = 4745 PSI, \frac{Fce}{Fc^{*}} = 0.496$
 $Cp = \frac{1 + (\frac{Fce}{Fc'})}{2c} - \sqrt{\left[\frac{1 + (\frac{Fce}{Fc'})}{2c}\right]^{2} - \frac{(\frac{Fce}{Fc'})}{c}} = \frac{1 + 0.496}{2 \times 0.8} - \sqrt{\left[\frac{1 + 0.496}{2 \times 0.8}\right]^{2} - \frac{0.496}{0.8}} = 0.43$
 $F'c = Fc. (CD. Cm. Ct. CF. Ci. Cp) = 4745 \times 0.43 = 2040PSI$
 $P = F'c. A = 2040 \times 0.25^{2} = 127\#$

2. Buckling Capacity of the Tower as a whole:

$$I = \Sigma I + \Sigma A d^{2} = 4 \times \frac{0.25 \times 0.25^{3}}{12} + 4 \times (0.25 \times 0.5) \times (3 - 0.125)^{2} = 2.07 \text{ in}^{4}$$

$$r = \sqrt{\frac{I}{A}} = \sqrt{\frac{2.07}{0.25^{2} \times 4}} = 2.88^{"}$$

$$\frac{Kl}{r} = \frac{1 \times 48}{2.88} = 16.67$$

$$Pcr = \frac{\pi^{2} lE}{\left(\frac{E}{r}\right)^{2}} = \frac{\pi^{2} \times 2.07 \times 1650000}{\left(16.67\right)^{2}} = 121306\#$$
Each column: $\frac{Pcr}{4} = 30326.5\#$

3. Crushing Capacity of Vertical Members:

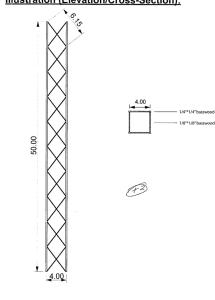
$$P = Fc.A = 4745 \times 0.25^2 = 296\#$$

Resources

Explanation:

We started by looking at precedents - both experimental and real-life implementations. Previous winning groups - Beam Me Up Scotty, Tower 2015, Take a Pisa My Heart - all seemed to use the same method: four long members supported by diagonal bracing and (except for Beam Me Up Scotty) horizontal bracing members. These members serve an important purpose; they shorten the effective buckling length of the four vertical members.

Radio towers use a similar method: vertical supporting masts, supported by diagonal bracing (and guy wires). While these do not experience compression outside of weight, they do experience a lot of wind - lateral forces - that can lead to buckling if not designed correctly.


Finally, the optimization sheet given to us also shows similar structures with diagonal bracing. So it was clear that this was the way to go.

We chose to divide the tower into 10 "levels," one for every 5 inches. We believe (based on the equations) that this should effectively combat buckling, and in an ideal situation with perfect craft, the tower may be able to support up to **296** pounds!

overall clarity (F)

Illustration (Elevation/Cross-Section):

Analysis:

Derivation of cross-sectional areas of each member:

We began our design by aiming at the capacity of 200 lb, not 50 lb. Using the Euler buckling equation, we can solve for a required slenderness ratio:

KL/r=√(π^2EA/P)= √(π^2*1,650,000*0.625/50)=142.67

This is a very high slenderness ratio, and it is very attainable. Assuming K=1.0, we can get the radius of gyration, r:

r=KL/142.67=1*5/142.67=0.035

Checking whether the member we are using is appropriate: r=h/ $\sqrt{12}$ h=0.035* $\sqrt{12}$ =0.12 in

.12 in is smaller than .71268 in (the r for a 1/4**1/4* basswood column), which confirms the viability of our choice of the 1/4**1/4* basswood column.

Comparing crushing:

P=F*A=4745*0.0625=296.5625lbs

Compared to our load of 50lbs for each vertical member, this crushing capacity is larger. Thus, our colums should be able to hold up.

Predicted weight estimate of entire tower:

Basswood: 20 lb/ft3, divided by (123) = .0116 lb/in3, multipled by 16 =

.185 oz/in³

Total weight: [.185*({4 vertical members * 50in * .25in * .25 in} + {80 diagonal members * 6.4in * .125in * .125in})] + [.25 oz of glue)] =

> 4.04 oz. (can be adjusted) (F) ~ Just beep in excon it and row should to ok.

Predicted Capacity...

... Of vertical members:

Length = 50"/10 spaces = 5"; Area = .0625"

 $r=\sqrt{1/A}=...$ width/ $\sqrt{12}$ <== Based off of JY recitation notes on wood columns = .25/\(12) = .07217

Vertical crushing: P = F_e A = (4745 psi)(.0625in²) = 296.56 lb

... Of the tower as whole:

Moment of interia:

Using the subtractive method (subtracting void of "column" from 4" * 4" occupied area of "column":

172

 $I = \sum I_{total} - I_{void}$ $I = [((4in)(4in)^3)/12] - [2^*((.25in)(3.5in)^3)/12] - [((3.5in)(4in)^3)/12]$

I = .88 in4

Critical buckling load:

Assume K = 1

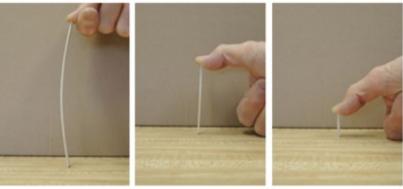
 $r = \sqrt{(.88in^4/(4^*.0625in^2))} = 1.876$ in

KL/R = 1(50in)/1.876 = 26.6524

 $F_{cr} = (\pi^2)(1,650,000 \text{psi})/(26.6542)^2 = 22,921.95 \text{ psi}$

 $P_{cr} = F_{cr}A = (22,921.95 \text{ psi})(4^*.0625 \text{in}^2) = 5,730.4875 \text{ lb}$

Of course, this is assuming that the tower is one large column with perfect craft. One can only dream...


LAB - Columns

Description

This project uses observation and calculation to understand the effect of slenderness on column capacity.

Procedure

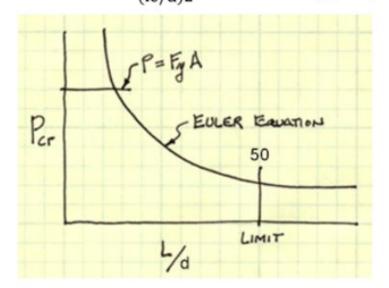
- For the 1/16"x1/4" basswood column provided, with L=6" calculate the controlling (weak axis) slenderness ratio and Pcr using the Euler equation. Use K=1.0.
- 2. Find the actual critical buckling load approximating the load with your finger.
- Repeat the procedure for L=3" and L=1".
- 4. Calculate the slenderness and Pcr for both of these lengths.
- 5. Calculate the ultimate crushing load based on the max compressive stress, Fc.
- Approximately locate P for each length on the load vs. slenderness curve shown below

Goals

To observe the buckling behavior of columns through physical modeling.

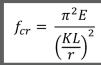
To find the controlling slenderness ratio.

To calculate the critical buckling and crushing loads.

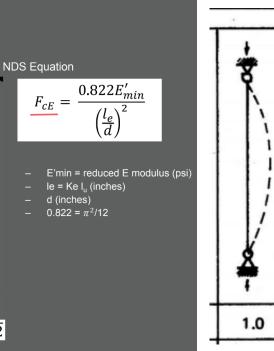

Basswood Properties

Emin = 1,650,000. psi Fc = 4745 psi Area = 0.015625 in² d₁ = 0.25 in d₂ = 0.0625 in L = 6" L/d = P = L = 3" L/d = P = L = 1" L/d = P =

Equations:

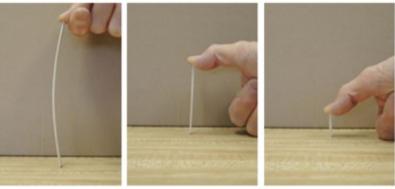

 $FcE = \frac{0.822 \text{ E/min}}{(\text{le/d})^2}$

 $P_{max} = F_c \times A$



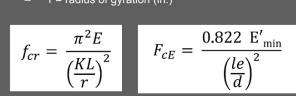
Failure Modes – Stability Long Columns – fail by buckling

Traditional Euler



- E = Modulus of elasticity of the column material (psi)
- K = Stiffness (curvature mode) factor
- L = Column length between ends (inches)
- r = radius of gyration = $\sqrt{I/A}$ (inches)

Procedure


- For the 1/16"x1/4" basswood column provided, with L=6" calculate the controlling (weak axis) slenderness ratio and Pcr using the Euler equation. Use K=1.0.
- Find the actual critical buckling load approximating the load with your finger.
- Repeat the procedure for L=3" and L=1". Slenderness ratio? Pcr?
- Calculate the slenderness and Pcr for both of these lengths.
- 5. Calculate the ultimate crushing load based on the max compressive stress, Fc.
- Approximately locate P for each length on the load vs. slenderness curve shown below

Euler Buckling (elastic buckling) $P_{cr} = \frac{\pi^2 AE}{\left(\frac{KL}{r}\right)^2} = \frac{\pi^2 IE}{(KL)^2}$ $I = Ar^2$

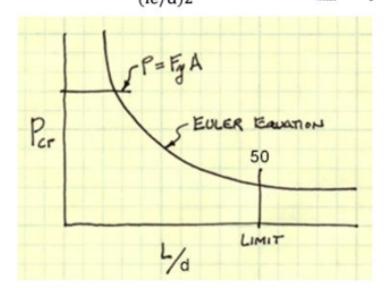
 $r = d/\sqrt{12}$

- A = Cross sectional area (in²)
- E = Modulus of elasticity of the material (lb/in^2)
- K = Stiffness (curvature mode) factor
- L = Column length between pinned ends (in.)
- r = radius of gyration (in.)

Buckling Force

Pcr = FcE * A

 $le = L^*K = L^* 1.0 = L$


Emin = 1,650,000. psi

Fc = 4745 psi Area = 0.015625 in² $d_1 = 0.25$ in $d_2 = 0.0625$ in L = 6" L/d = P = L = 3" L/d = P = L = 1" L/d =

P =

Equations: $FcE = \frac{0.822 \text{ E/min}}{(\text{le/d})2}$

 $P_{max} = F_c \times A$

Basewood Bron

Failure Mode - Strength

Short Columns – fail by crushing

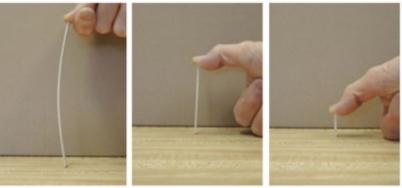
- f_c = Actual compressive stress
- A = Cross-sectional area of column (in^2)
- P = Load on the column
- F_c = Allowable compressive stress per codes

Crushing Force:

Pmax = Fc * A

Guess: Which stick would fail by buckling? Which stick would fail by crushing?

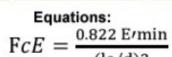
Pro

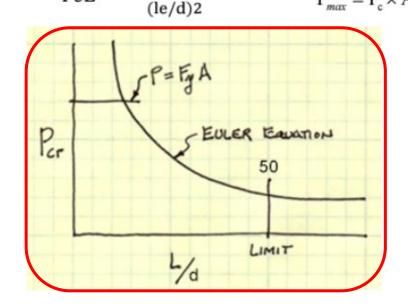

V

COMPRESSION

个

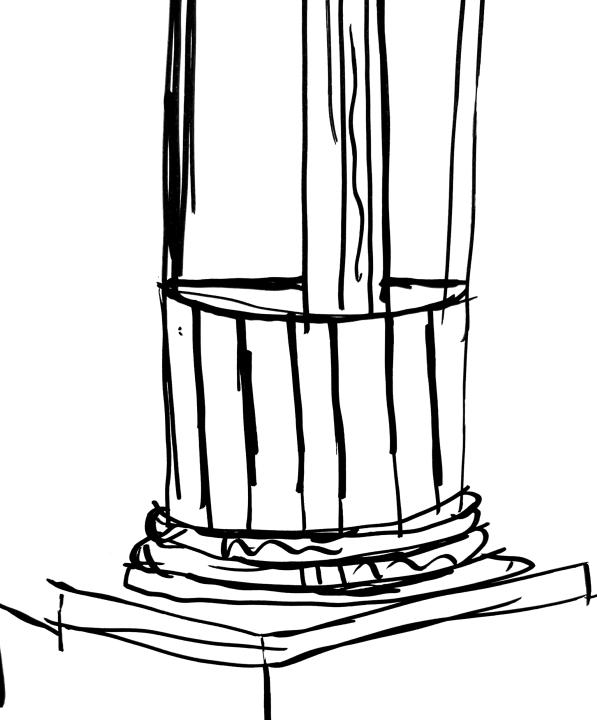
Procedure


- For the 1/16"x1/4" basswood column provided, with L=6" calculate the controlling (weak axis) slenderness ratio and Pcr using the Euler equation. Use K=1.0.
- 2. Find the actual critical buckling load approximating the load with your finger.
- 3. Repeat the procedure for L=3" and L=1".
- 4. Calculate the slenderness and Pcr for both of these lengths.
- 5. Calculate the ultimate crushing load based on the max compressive stress, Fc. Pmax?
- Approximately locate P for each length on the load vs. slenderness curve shown below


Basswood Properties

Emin = 1,650,000. psi Fc = 4745 psi Area = 0.015625 in² d1 = 0.25 in d2 = 0.0625 in L = 6" L/d = P = L = 3" L/d = P = L = 1" L/d =

P =


 $P_{max} = F_c \times A$

Any Questions?

yifanma@umich.edu

Thank You!

