Architecture 324 Structures II

Steel Column Analysis

- · Failure Modes
- · Effects of Slenderness
- Stress Analysis of Steel Columns

University of Michigan, TCAUP Structures II Slide 1 of 20

Leonhard Euler (1707 - 1783)

Euler Buckling (elastic buckling)

$$P_{cr} = \frac{\pi^2 AE}{\left(\frac{KL}{r}\right)^2} = \frac{\pi^2 IE}{(KL)^2}$$

$$r = \sqrt{\frac{I}{A}}$$

$$I = Ar^2$$

- A = Cross sectional area (in²)
- E = Modulus of elasticity of the material (lb/in²)
- K = Stiffness (curvature mode) factor
- L = Column length between pinned ends (in.)
- r = radius of gyration (in.)

$$f_{cr} = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2} \le F_{cr}$$

portrait by Emanuel Handmann, 1753

Analysis of Steel Columns

Conditions of an Ideal Column

- initially straight
- axially loaded
- uniform stress (no residual stress)
- uniform material (no holes)
- no transverse load
- · pinned (or defined) end conditions

University of Michigan, TCAUP Structures II Slide 3 of 20

Analysis of Steel Columns

Short columns

Fail by material crushing Plastic behavior

Intermediate columns

Crush partially and then buckle Inelastic behavior Local buckling – flange or web Flexural torsional buckling - twisting

AISC Equation E3-2 (inelastic buckling)

Point of tangency of curves

AISC Equation E3-3

Long columns

Fail in Euler buckling Elastic behavior

Failure Modes

Column 1: Strong axis flexural buckling

Column 2: Web local buckling

Column 3: Weak axis flexural buckling

Column 4: Torsional buckling Column 5: Flange local buckling

"Dancing Columns" Sherif El-Tawil

University of Michigan, TCAUP

Structures II

Slide 5 of 20

Analysis of Steel Columns

Analysis of Steel Columns

Estimate of K:

University of Michigan, TCAUP

Structures II

Slide 7 of 20

Determining K factors by Alignment Charts

Sidesway Inhibited: Braced frame 1.0 > K > 0.5

Sidesway Uninhibited: Un-braced frame unstable > K > 1.0

More Pinned:
If Ic/Lc is large
and Ig/Lg is small
The connection is more pinned

More Fixed:
If Ic/Lc is small
and Ig/Lg is large
The connection is more fixed

Sidesway inhibited

Fig. C-A-7.1. Alignment chart—sidesway inhibited (braced frame).

$$G = \frac{\sum \left(\frac{EI}{L}\right)_{column}}{\sum \left(\frac{EI}{L}\right)_{beam}}$$

Determining K factors by Alignment Charts

Sidesway Inhibited: Braced frame 1.0 > K > 0.5

Sidesway Uninhibited: Un-braced frame unstable > K > 1.0

More Pinned:

If Ic/Lc is large

and Ig/Lg is small

The connection is more pinned

More Fixed:

If Ic/Lc is small

and Ig/Lg is large

The connection is more fixed

Sidesway uninhibited

Fig. C-A-7.2. Alignment chart—sidesway uninhibited (moment frame).

$$G = \frac{\sum \left(\frac{EI}{L}\right)_{column}}{\sum \left(\frac{EI}{L}\right)_{beam}}$$

University of Michigan, TCAUP Structures II Slide 9 of 20

Analysis of Steel Columns - LRFD

Euler equation:

$$F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$

Short & Intermediate Columns:

$$F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y$$

Equation E3-2

Long Columns:

$$F_{cr} = 0.877 F_e$$

AISC Equation E3-2 (inelastic buckling)

Point of tangency of curves

AISC Equation E3-3 (elastic buckling)

Transition $\frac{KL}{F}$ between equations (134 for $F_y = 36$ ksi, 113 for $F_y = 50$ ksi, etc.)

Iong

Transition Slenderness $4.71\sqrt{\frac{E}{F_{y}}}$

$$P_n = F_{cr}A_g$$

$$\phi_c P_n = \phi_c F_{cr}A_g$$

$$(\phi_c = 0.90)$$

Equation E3-3

Analysis of Steel Columns pass / fail by LRFD

Data:

- Column size, length
- Support conditions
- Material properties F_v
- Factored load P_u

Required:

• $P_{\mu} \leq \emptyset P_{n}$ (pass)

- 1. Calculate slenderness ratios: L_c/r_x and L_c/r_y ($L_c = KL$) The largest ratio governs.
- 2. Check slenderness ratio against upper limit of 200 (recommended)
- 3. Calculate transition slenderness $4.71\sqrt{E/Fy}$ and determine column type (short or long)
- 4. Calculate F_{cr} based on slenderness
- 5. Determine ϕP_n and compare to P_u $P_n = F_{cr} A_a$ $\emptyset = 0.9$
- 6. If $P_u \leq ø P_n$, then OK

$$F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y$$
 Short

$$F_{cr} = 0.877 F_e$$
 Long

University of Michigan, TCAUP

Structures II

Slide 11 of 20

Example - Analysis of Steel Columns pass / fail by ASD

Data:

- Column <u>size</u>, length
- Support conditions
- Material properties F_v
- Factored Load P,

Required:

• $P_{u} \leq \emptyset P_{n}$ (pass)

DATA:

$$l_x = 12'$$
 $l_y = 6'$
 $K_x = K_y = 1.0$

1. Calculate slenderness ratios: L_c/r_x and L_c/r_y ($L_c = KL$) The largest ratio governs.

Table 1-1 (continued) W-Shapes **Properties**

Nom-	Compact Section Criteria		Axis X-X				Axis Y-Y				r _{ts}	h _o	Torsional Properties	
Wt.	b _f	eria h	1	S	r	Z	1	S	r	Z			J	C _w
lb/ft	2tf	t _w	in.4	· in.3	in.	in.3	in.4	in.3	in.	in.3	in.	in.	in.4	in. ⁶
67	4.43	11.1	272	60.4	3.72	70.1	88.6	21.4	2.12	32.7	2.43	8.07	5.05	1440
58	5.07	12.4	228	52.0	3.65	59.8	75.1	18.3	2.10	27.9	2.39	7.94	3.33	1180
48	5.92	15.9	184	43.2	3.61	49.0	60.9	15.0	2.08	22.9	2.35	7.82	1.96	931
40	7.21	17.6	146	35.5	3.53	39.8	49.1	12.2	2.04	18.5	2.31	7.69	1.12	726
35	8.10	20.5	127	31.2	3.51	34.7	42.6	10.6	2.03	16.1	2.28	7.63	0.769	619
31	9.19	22.3	110	27.5	3.47	30.4	37.1	9.27	2.02	14.1	2.26	7.57	0.536	530

Example - Analysis of Steel Columns pass / fail by ASD

Data:

- Column size, length
- Support conditions
- Material properties F_v
- Factored Load P_u

Required:

- Pu $\leq \emptyset$ P_n (pass)
- Calculate slenderness ratios. The largest ratio governs.
- 2. Check slenderness ratio against upper limit of 200 (recommended)

$$\frac{X - X}{K_{x}} = \frac{144}{3.51}$$
 $\frac{X - Y}{K_{y}} = \frac{72}{2.03}$

University of Michigan, TCAUP

Structures II

Slide 13 of 20

Example - Analysis of Steel Columns pass / fail by ASD

- 3. Calculate transition slenderness $4.71\sqrt{E/F_{y}}$ and determine column type (short or long)
- 4. Calculate F_{cr} based on slenderness
- 5. Determine ϕP_n and compare to P_u
- 6. If $P_u \leq \emptyset P_n$, then OK

$$4.71\sqrt{\frac{E}{F_{xy}}} = 4.71\sqrt{\frac{29000}{36}} = 134$$

 $41 < 134$: SHORT

Euler Equation

$$\bar{E} = \frac{\pi^2 E}{\left(\frac{KL}{F}\right)^2} = \frac{\pi^2 29000^{KSI}}{4I^2} = 170.2 \text{ KSI}$$

Short Column Equation

Column Strength

$$F_h = F_{cr} A_g = 32.95 \text{ KeV} \times 10.3 \text{ m}^2 = 339.39 \text{ K}$$

$$\phi_{F_h} = 0.9 F_h = 0.9 (339.39) = 305.4 \text{ K}$$

$$F_h = 280 \text{ K} < 305.4 \text{ K} = 4 \text{ FW} \text{ oc}$$

Analysis of Steel Columns capacity by LRFD

Data:

- Column size, length
- Support conditions
- Material properties F_y

Required:

- Max load capacity
- 1. Calculate slenderness ratios. The largest ratio governs.
- 2. Check slenderness ratio against upper limit of 200 (recommended)
- 3. Calculate transition slenderness $4.71\sqrt{E/F_y}$ and $F_{cr} = \left[0.658^{\frac{F_y}{F_c}}\right]F_y$ Short determine column type (short or long)
 - $F_{cr} = 0.877F_e \qquad \qquad \text{Long}$

Slide 15 of 20

4. Calculate F_{cr} based on slenderness
5. Determine øPn and Compute allowable capacity:

$$P_n = F_{cr} A_q$$
 $P_u = \emptyset P_n$

University of Michigan, TCAUP

Structures II

Capacity Example 1

Free standing column
Third floor studio space
Supports roof load = 20 psf DL + SL
snow ≈ 15lbs / FT depth

Capacity Example 1

- Calculate slenderness ratios.
 The largest ratio governs.
- Check slenderness ratio against upper limit of 200 (recommended)
- 3. Calculate transition slenderness $4.71\sqrt{E/F_y}$ and determine column type (short or long)
- 4. Calculate F_{cr} based on slenderness

$$y-y$$
 Axis (controls)
$$\frac{K_g L_g}{r_g} = \frac{1(162^\circ)}{2.03''} = 79.8 < 200$$

Euler Buckling

$$F_e = \frac{\pi^2 E}{(K_F)^2} = \frac{\pi^2 29000}{79.8^2} = 44.94 \text{ KSI}$$

Short Column Equation

$$F_{cr} = \left[0.658^{\frac{r_{x}}{r_{c}}}\right] F_{y} = \left[0.7151\right] 36 = 25.74 \text{ KSI}$$

University of Michigan, TCAUP

Structures II

Slide 17 of 20

Capacity Example 1

5. Determine $\emptyset P_n$ and Compute allowable capacity: $P_u = \emptyset P_n$

Column nominal strength

$$P_n = F_{cr} A_g = 25.74 \text{ KSI} 10.3 \text{ m}^2 = 245.1^{\text{K}}$$

 $\Phi_{RL} = 0.9(245) = 238.6^{\text{K}} = P_D$

Load capacity

$$P_U = 1.2(32) + 1.4(5L) = 238.4^k$$

 $5L = 125.1^k$

For
$$A_T = 40 \times 40 = 1600 \text{ sf}$$

$$5L = \frac{125100}{1600 \text{ sf}} = 78.2 \text{ Psf}$$

$$78.2 \text{ lbs} / 15 \text{ lbs/ft} = 5.21 \text{ ft}$$

Capacity Example 2 long column - using equations

Find the capacity for the 25 ft. column shown.

$$r_x = 3.51 \text{ in.}$$

 $r_v = 2.03 \text{ in.}$

Table G1	Buckling Length Coefficients, K _e									
Buckling modes				- B O	+0	+ 22				
Theoretical K_e value	0.5	0.7	1.0	1.0	2.0	2.0				
Recommended design K_e when ideal conditions approximated	0.65	0.80	1.2	1.0	2.10	2.4				
End condition code		Rotat	ion fixed ion free, ion fixed ion free,	translatio , translat	on fixed					

Slenderness y-y

$$\frac{K l_y}{r_y} = \frac{0.8(25)12}{2.03} = 118.2$$

Euler Buckling

$$F_e = \frac{\pi^2 E}{\left(\frac{K^2}{2}\right)^2} = \frac{\pi^2 29000}{118.2^2} = 20.47 \text{ KSI}$$

Long Column Equation

Column strength

University of Michigan, TCAUP

Structures II

Slide 19 of 20

DESIGN OF COMPRESSION MEMBERS

Capacity Example 2 long column – using table

$$F_{y} = CONTROLS$$

$$KL = 0.8(25') = 20'$$

		,	A۱	vail	abl	1a (d e Si ipre	trer	ngtŀ	n in		F _y =	: 50 F	csi	
W	В				W	-Sha	pes							
Sha	ipe						W							
lb/	lb/ft		67		58		48		40		35		1	
Design		P_n/Ω_c	φ _c P _n	P_n/Ω_c	φ _c P _n	P_n/Ω_c	φ _c P _n	P_n/Ω_c	φ _c P _n	P_n/Ω_c	φ _c P _n	P_n/Ω_c	φ _c P _n	
	_	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
	0	590	886	512	769	422	634	350	526	308	463	273	411	
7	6	542	815	470	706	387	581	320	481	281	423	249	374	
, <u>e</u>	7	526	790	455	685	375	563	309	465	272	409	241	362	
Ta	8	508	763	439	660	361	543	298	448	262	394	232	348	
6	9	488	733	422	634	347	521	285	429	251	377	222	333	
Effective length, L_c (ft), with respect to least radius of gyration, $\ell_{m{y}}$	10	467	701	403	606	331	497	272	409	239	359	211	317	
뼕	11	444	668	384	576	314	473	258	388	226	340	200	301 283	
#	12 13	421 397	633 597	363 342	546 514	297 280	447 421	243	366 343	213	321 301	189	283	
ea	14	373	560	342	482	262	394	213	321	187	281	165	248	
2	15	348	523	299	450	244	367	198	298	174	261	153	230	
t e	16	324	487	278	418	226	340	183	275	160	241	141	212	
esb	17	300	450	257	386	209	314	169	253	147	221	130	195	
ā l	18	276	415	236	355	192	288	154	232	135	203	118	178	
¥	19	253	381	216	325	175	264	141	211	123	104	108	162	
Ē	20	231	347	197	296	159	239	127	191	111	166	97.2	146	
7	22	191	287	163	244	132	198	105	158	91.5	138	80.3	121	
ŧ.	24	160	241	137	205	111	166	88.2	133	76.9	116	67.5	101	
<u> </u>	26	137	205	116	175	94.2	142	75.2	113	65.5	98.5	57.5	86.5	
ķ	28	118	177	100	151	81.2	122	64.8	97.4	56.5	84.9	49.6	74.5	
ect	30	103	154	87.5	131	70.7	106	56.5	84.9	49.2	74.0	43.2	64.9	
盂	32	90.3	136	76.9	116	62.2	93.5	49.6	74.6	43.3	65.0	38.0	57.1	
	34	79.9	120	68.1	102	55.1	82.8	44.0	66.1	10.0	00.0	00.0	0111	
	-	7.00				Propert					L			
P _{um} , kips		126	190	102	153	72.0	108	57.2	85.9	45.9	68.9	39.4	59.1	
P _{wi} , kip/ir	n.	19.0	28.5	17.0	25.5	13.3	20.0	12.0	18.0	10.3	15.5	9.50	14.3	
P _{wb} , kips		507	761	363	546	174	262	127	192	81.1	122	63.0	94.7	
Pfb, kips		164	246	123	185	87.8	132	58.7	88.2	45.9	68.9	35.4	53.2	
L_p , ft			7.49		7.42		7.35		7.21		7.17		7.18	
L _r , ft		47.6		41.6		35.2		29.9		27.0		24.8		
A_g , in. ²		19.7		17.1		14.1		11.7		10.3		9.13		
l _x , in.4		272		228		184		146		127		110		
$\hat{l_y}$, in. ⁴		88.6		75.1		60.9		49.1		42.6		37.1		
r _y , in.		2.12		2.10		2.08		2.04		2.03		2.02		
rx/ry		1.75		1.74		1.74		1.73		1.78		1.72		
$P_{ex} \dot{L}_c^2 / 10^4$, k-in. ² $P_{ey} \dot{L}_c^2 / 10^4$, k-in. ²		7790 2540		6530 2150		5270 1740		4180 1410		3630 1220		3150 1060		
ASD			LRFD				idicates L_c/r_v equal to or greater than 200				20 1000			
		_		1	out, 11110		26y 0q	uu. 10 01 §	,, 04.01 (
$\Omega_c = 0$	1.67	$\phi_c = 0$	0.90											

AMERICAN INSTITUTE OF STEEL CONSTRUCTION