Architecture 324 Structures II

Steel Column Analysis

- · Failure Modes
- · Effects of Slenderness
- · Stress Analysis of Steel Columns

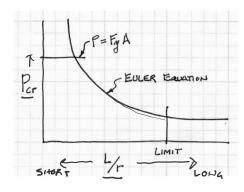
University of Michigan, TCAUP Structures II Slide 1 of 20

Leonhard Euler (1707 – 1783)

Euler Buckling (elastic buckling)

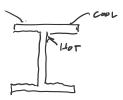
$$P_{cr} = \frac{\pi^2 AE}{\left(\frac{KL}{\underline{r}}\right)^2} = \frac{\pi^2 IE}{(KL)^2}$$

$$r = \sqrt{\frac{I}{A}}$$


$$I = Ar^2$$

- A = Cross sectional area (in²)
- E = Modulus of elasticity of the material (lb/in²)
- K = Stiffness (curvature mode) factor
- L = Column length between pinned ends (in.)
- r = radius of gyration (in.)

$$f_{cr} = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2} \le F_{cr}$$


portrait by Emanuel Handmann,1753

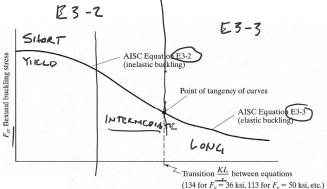


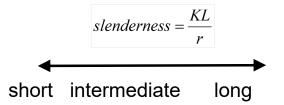
Analysis of Steel Columns

Conditions of an Ideal Column

- initially straight
- axially loaded
- uniform stress (no residual stress)
- uniform material (no holes)
- no transverse load
- · pinned (or defined) end conditions

University of Michigan, TCAUP Structures II Slide 3 of 20


Analysis of Steel Columns


Short columns

Fail by material crushing Plastic behavior

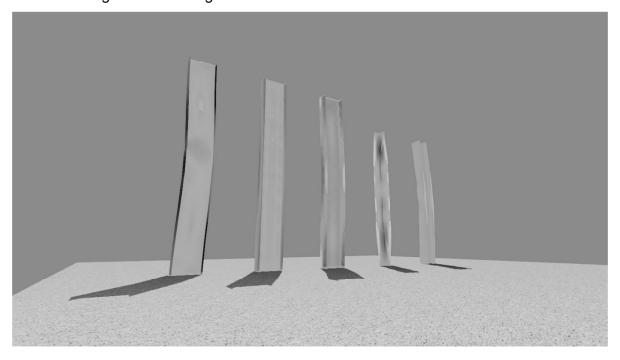
Intermediate columns

Crush partially and then buckle Inelastic behavior Local buckling – flange or web Flexural torsional buckling - twisting

Long columns

Fail in Euler buckling Elastic behavior

Failure Modes

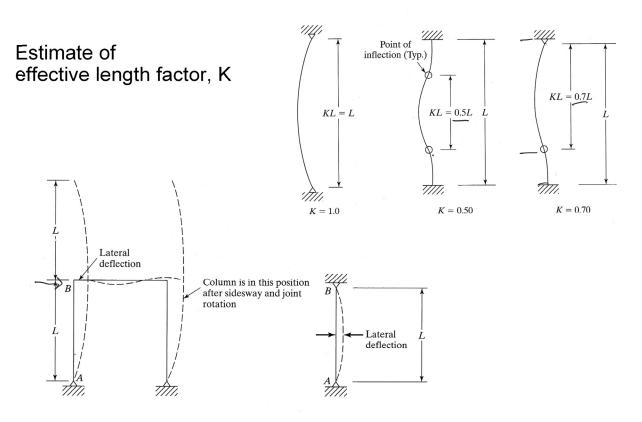

Column 1: Strong axis flexural buckling

Column 2: Web local buckling

Column 3: Weak axis flexural buckling

Column 4: Torsional buckling Column 5: Flange local buckling

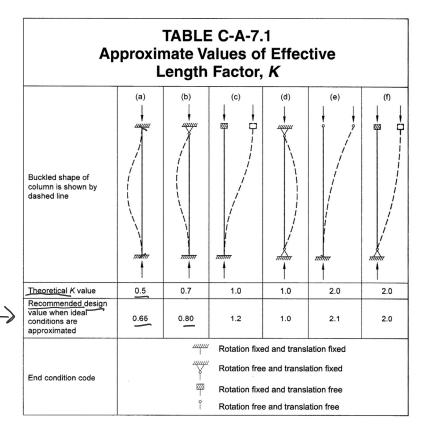
"Dancing Columns" Sherif El-Tawil


University of Michigan, TCAUP

Structures II

Slide 5 of 20

Slide 6 of 20


Analysis of Steel Columns

University of Michigan, TCAUP Structures II

Analysis of Steel Columns

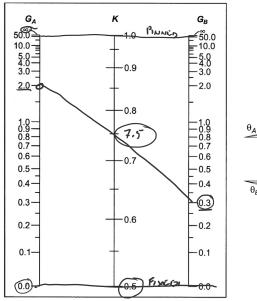
Estimate of K:

University of Michigan, TCAUP

Structures II

Slide 7 of 20

Determining K factors by Alignment Charts


Sidesway Inhibited: Braced frame 1.0 > K > 0.5

Sidesway Uninhibited: Un-braced frame unstable > K > 1.0

More Pinned:
If Ic/Lc is large
and Ig/Lg is small
The connection is more pinned

More Fixed:
If Ic/Lc is small
and Ig/Lg is large
The connection is more fixed

Sidesway inhibited

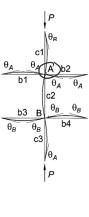


Fig. C-A-7.1. Alignment chart—sidesway inhibited (braced frame).

$$\underline{G} = \frac{\sum \left(\frac{EI}{L}\right)_{column}^{\$716\mu_{L}\$5}}{\sum \left(\frac{EI}{L}\right)_{beam}^{\bullet}} \underbrace{\frac{100}{200}}_{106}$$

Determining K factors by Alignment Charts

Sidesway Inhibited: Braced frame 1.0 > K > 0.5

Sidesway Uninhibited: Un-braced frame unstable > K > 1.0

More Pinned:

If Ic/Lc is large

and Ig/Lg is small

The connection is more pinned

More Fixed:

If Ic/Lc is small
and Ig/Lg is large
The connection is more fixed

Sidesway uninhibited

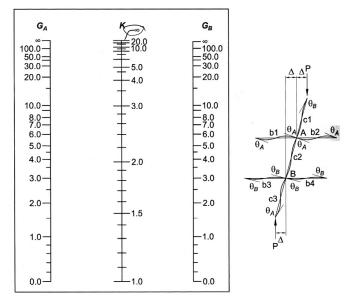


Fig. C-A-7.2. Alignment chart—sidesway uninhibited (moment frame).

$$G = \frac{\sum \left(\frac{EI}{L}\right)_{column}}{\sum \left(\frac{EI}{L}\right)_{beam}}$$

AISC Equation E3-2

short

Transition

Slenderness

AISC Equation E3-3 (elastic buckling)

tition $\frac{KL}{v}$ between equations or $F_v = \frac{3}{2}$ 6 ksi, 113 for $F_v = 50$ ksi, etc.)

long

University of Michigan, TCAUP Structures II Slide 9 of 20

Analysis of Steel Columns - LRFD

Euler equation:

$$F_e = \frac{\pi^2 E}{\left(\cancel{K} L\right)^2}$$

Short & Intermediate Columns:

$$F_{cr} = \begin{bmatrix} 0.658 & F_{cy} \\ 0.658 & F_{cy} \end{bmatrix} F_{y}$$
Reputation states

Equation E3-2

Long Columns:

$$F_{cr} = 0.877 \underline{F_e}$$

 $P_n = F_{cr}A_g$ $\phi_c P_n = \phi_c F_{cr}A_g$ $(\phi_c = 0.90)$

Equation E3-3

Analysis of Steel Columns pass / fail by LRFD

Data:

- Column size, length –
- Support conditions
- Material properties F_v
- Factored load P_u

Required:

• $P_{\mu} \leq \emptyset P_{n}$ (pass)

- 1. Calculate slenderness ratios: L_c/r_x and L_c/r_y ($L_c = KL$) The largest ratio governs.
- 2. Check slenderness ratio against upper limit of 200 (recommended)
- 3. Calculate transition slenderness $4.71\sqrt{E/Fy}$ and determine column type (short or long)

 Calculate F_{cr} based on slenderness $F_{cr} = \begin{bmatrix} 0.658^{\frac{F_{y}}{F_{e}}} \\ \end{bmatrix} F_{y}$ 4. Calculate F_{cr} based on slenderness
- 5. Determine ϕP_n and compare to P_u $\underline{P_n} = \underline{F_{cr}} \underline{A_g} \qquad \emptyset = 0.9$
- 6. If $P_u \stackrel{\sim}{\leq} \emptyset \stackrel{\sim}{P_n}$, then OK

University of Michigan, TCAUP

Structures II

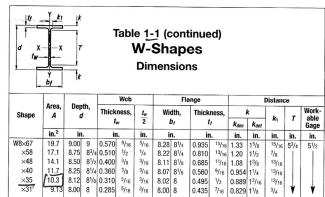
Slide 11 of 20

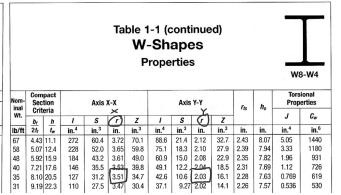
Long

Example - Analysis of Steel Columns pass / fail by ASD

Data:

- Column <u>size</u>, length
- Support conditions
- Material properties F_y
- Factored Load P_u


Required:


• $P_u \leq \emptyset P_n \text{ (pass)}$

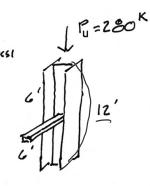
DATA: $W = 3 \times 35^{\circ}$ $V = 3.51^{\circ}$ $V = 2.03^{\circ}$ $V = 10.3 \times 2$ $V = 12^{\circ}$ $V = 12^{\circ}$

 $F_{cr} = 0.877 F_e$

1. Calculate slenderness ratios: L_c/r_x and L_c/r_y ($L_c = KL$) The largest ratio governs.

Example - Analysis of Steel Columns pass / fail by ASD

Data:


- Column size, length
- Support conditions
- Material properties F_v
- Factored Load P_u

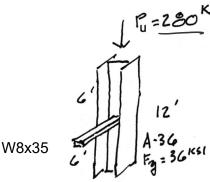
Required:

- Pu $\leq \varphi P_n$ (pass)
- Calculate slenderness ratios.
 The largest ratio governs.
- 2. Check slenderness ratio against upper limit of 200 (recommended)

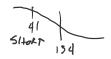
W 8×35 A-36

$$f_{x} = 3.51$$
 $f_{y} = 36^{KS1}$
 $f_{y} = 2.03$ $f_{z} = 36^{KS1}$
 $A = 10.3$ h_{z}^{2}
 $f_{x} = 12$ $f_{x} = 6$
 $f_{x} = 10.3$ $f_{y} = 1.0$

$$\frac{Y-Y}{K_y} = \frac{72}{2.03}$$


University of Michigan, TCAUP

Structures II


Slide 13 of 20

Example - Analysis of Steel Columns

pass / fail by ASD

- 3. Calculate transition slenderness $4.71\sqrt{E/Fy}$ and determine column type (short or long)
- 4. Calculate F_{cr} based on slenderness
- 5. Determine ϕP_n and compare to P_u
- 6. If $P_{u} \leq \emptyset P_{n}$, then OK

Euler Equation

$$\frac{F_{e}}{F} = \frac{\pi^{2} E}{\left(\frac{KL}{F}\right)^{2}} = \frac{\pi^{2} 29000^{KSI}}{4I^{2}} = 170.2 \frac{KSI}{2}$$

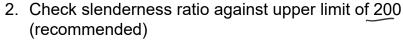
Short Column Equation

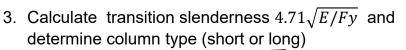
Column Strength

$$P_h = E_r A_3 = 32.95 \text{ KSI} \times 10.3 \text{ M}^2 = 339.39 \text{ K}$$

$$\Phi_h = 0.9 P_h = 0.9 (339.39) = \overline{3305.4 \text{ K}}$$

$$P_h = 280 \text{ K} < 305.4 \text{ K} = 4P_h \text{ OK}$$


Analysis of Steel Columns capacity by LRFD


Data:

- Column size, length
- Support conditions
- Material properties F_y

Required:

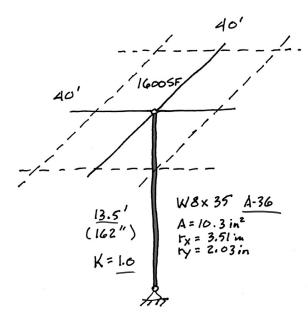
- Max load capacity
- 1. Calculate slenderness ratios. The largest ratio governs.

5. Determine $\emptyset Pn$ and Compute allowable capacity: $\underbrace{P_n}_{c_i} = F_{c_i} A_g \qquad P_u = \emptyset P_n$

$$F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y \quad \text{Short}$$

$$F_{cr} = 0.877F_e$$
 Long

Fn


University of Michigan, TCAUP

Structures II

Slide 15 of 20

Capacity Example 1

Free standing column
Third floor studio space
Supports roof load = 20 psf DL + \$L
snow ≈ 15lbs / FT depth

Capacity Example 1

- Calculate slenderness ratios.
 The largest ratio governs.
- Check slenderness ratio against upper limit of 200 (recommended)
- 3. Calculate transition slenderness $4.71\sqrt{E/Fy}$ and determine column type (short or long)
- 4. Calculate F_{cr} based on slenderness

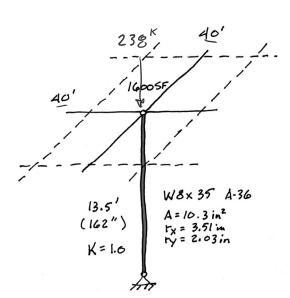
$$\frac{y-y}{x}$$
 Axis (controls)
$$\frac{K_g L_g}{r_y} = \frac{1.(162^\circ)}{2.03''} = \frac{79.8}{2.00} < 200$$

Euler Buckling

$$F_e = \frac{\pi^2 E}{(K_F)^2} = \frac{\pi^2 29000}{79.8^2} = 44.94 \text{ KSI}$$

Short Column Equation

$$F_{cr} = \left[0.668^{\frac{r_x}{r_c}}\right] F_y = \left[0.7151\right] 36 = 25.74 \text{ KSI}$$


University of Michigan, TCAUP

Structures II

Slide 17 of 20

Capacity Example 1

5. Determine $\emptyset P_n$ and Compute allowable capacity: $P_u = \emptyset P_n$

Column nominal strength

$$P_{N} = F_{CT} \Delta_{g} = 25.74 \text{ KSI} \quad 10.3 \text{ m}^{2} = 265.1^{\text{K}}$$

$$\Phi P_{N} = 0.9(265) = 238.6^{\text{K}} = P_{0}$$

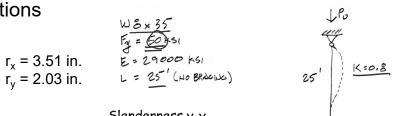
$$\text{Load capacity IPL} \qquad ?$$

$$P_{U} = 1.2(32) + 1.6(31) = 238.6^{\text{K}}$$

$$\text{SL} = 125.1^{\text{K}}$$

For
$$A_T = 40 \times 40 = 1600 \text{ sf}$$

$$5L = \underbrace{125100^{4}}_{1600 \text{ sf}} = \frac{78.2 \text{ Psf}}{78.2 \text{ lbs} / 15 \text{ lbs/ft}} = 5.21 \text{ ft}$$


Capacity Example 2

long column - using equations

Find the capacity for the 25 ft. column shown.

$$r_x = 3.51 \text{ in.}$$

 $r_v = 2.03 \text{ in.}$

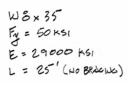
Table G1	Buckling Length Coefficients, K _e									
Buckling modes		***************************************		- NO.	+0	222				
Theoretical $K_{\!e}$ value	0.5	0.7	1.0	1.0	2.0	2.0				
Recommended design K_e when ideal conditions approximated	0.65	0.80	1.2	1.0	2.10	2.4				
End condition code	**************************************	Rotation fixed, translation fixed Rotation free, translation fixed Rotation fixed, translation free Rotation free, translation free								

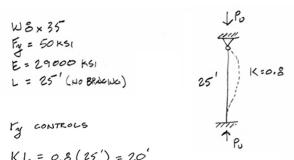
Slenderness y-y

$$\frac{K l_y}{r_y} = \frac{0.5(25)12}{2.03} = 118.2$$

Euler Buckling

$$\frac{F_e}{\left(\frac{\kappa^2}{F}\right)^2} = \frac{T^2 29000}{118.2^2} = \frac{20.47 \text{ KSI}}{118.2^2}$$
Long Column Equation
$$F_{cr} = 0.877 (20.47) = 17.95 \text{ KSI}$$


Column strength
$$\frac{4^{12}}{4^{12}} = \frac{4^{12}}{4^{12}} = 0.9(17.95)(10.3) = 166.4^{12}$$


University of Michigan, TCAUP

Structures II

Slide 19 of 20

Capacity Example 2 long column – using table

DESIGN OF COMPRESSION MEMBERS

		,		Tabl vaila al C	abl		trer	ngtl	ı in		F _y =	: 50 I	ksi
W	3				W	-Sha	pes						
Sha						W8:		_					
lb/ft Design		67		58		48		40		(35)		31	
		P_n/Ω_o	o₀P _n	P_n/Ω_o	φ _c P _n	P_n/Ω_o	φ _o P _n	P_n/Ω_o	φ _c P _n	P_n/Ω_c	φ _o P _n	P_n/Ω_c	φ _c P _c
		ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFI
	0	590	886	512	769	422	634	350	526	308	463	273	411
7	6	542	815	470	706	387	581	320	481	281	423	249	374
ğ	7 8	526	790 763	455 439	685 660	375 361	563	309 298	465 448	272 262	409 394	241	362 348
yra	9	508 488	733	439	634	347	543 521	285	440	251	377	222	333
Effective length, L_c (ft), with respect to least radius of gyration, r_f	10	467	701	403	606	331	497	272	409	239	359	211	317
SI	11	444	668	384	576	314	473	258	388	226	340	200	301
ad	12	421	633	363	546	297	447	243	366	213	321	189	283
ts	13	397	597	342	514	280	421	228	343	200	301	177	266
<u>6</u>	14	373	560	321	482	262	394	213	321	187	281	165	248
# #	15	348	523	299	450	244	367	198	298	174	261	153	230
e de	16	324	487	278	418	226	340	183	275	160	241	141	212
<u>8</u>	17	300	450	257	386	209	314	169	253	147	221	130	195
€	18	276	415	236	355	192	288	154	232	135	203	118	178
, 	19	253	381	216	325	175	264	141	211	123	104	108	162
£—	20	231	347	197	296	159	239	127	191	111	166	97.2	146
ľ,	22	191	287	163	244	132	198	105	158	91.5	130	80.3	121
ığ	24	160	241	137	205	111	166	88.2	133	76.9	116	67.5	101
<u>a</u>	26	137	205	116	175	94.2	142	75.2	113	65.5	98.5	57.5	86.
ž.	28	118	177	100	151	81.2	122	64.8	97.4	56.5	84.9	49.6	74.
J¥	30	103	154	87.5	131	70.7	106	56.5	84.9	49.2	74.0	43.2	64.
-	32 34	90.3	136	76.9	116	62.2	93.5	49.6	74.6 66.1	43.3	65.0	38.0	57.
	34	79.9	120	68.1	102	55.1	82.8	44.0	00.1	100			
						Proper							
Pwo, kips		126	190	102	153	72.0	108	57.2	85.9	45.9	68.9	39.4	59.1
Pwi, kip/ir	٦.	19.0	28.5	17.0	25.5	13.3	20.0	12.0	18.0	10.3	15.5	9.50	14.3
P _{wb} , kips		507	761 246	363 123	546 185	174 87.8	262	127 58.7	192 88.2	81.1 45.9	122 68.9	63.0 35.4	94.7
Pfb, kips		164	7.49	123	7.42	87.8	7.35	58./	7.21	45.9	7.17	33.4	7.18
L_p , ft L_f , ft		7.49 47.6		7.42 41.6		7.35 35.2		29.9		27.0		24.8	
A_g , in. ²		19.7		17.1		14.1		11.7		10.3		9.13	
I _x , in. ⁴		27				184		146		127		110	
l _y , in.4			88.6 75.1		60.9		49.1		42.6		37.1		
ry, in.		1	2.12 2.10		2.08		2.04		2.03		2.02		
r_x/r_y			1.75		1.74		1.74		1.73	[1.78		1.72
$P_{\rm ex}L_{\rm c}^{2}/10^{4}$, k-in. ²		7790 6530			5270 4180			3630		3150			
P _{ey} L _c ² /10 ⁴ , k-in. ² 2540			2150 1740 1410 1220 106 Note: Heavy line indicates L _c /r _y equal to or greater than 200.							50			
ASI	0	LRF	D	Note: H	eavy line	indicates	L _c /r _y eq	ual to or g	reater th	an 200.			
	1.67	$\phi_c = 0$		1									

Slide 20 of 20