Architecture 324 Structures II

Reinforced Concrete Beams Ultimate Strength Design (ACI 318-14) - PART II

- Rectangular Slab Analysis
- Reinforcement Detailing
- Rectangular Beam Design Method I

 ϕ Mn \geq Mu (if $\varepsilon_t \geq 0.005$ then $\phi = 0.9$)

8. Determine max. loading (or span)

Data:

 $1.6w_{LL} = \frac{M_u 8}{l^2} - 1.2w_{DL}$

800)

(600)

(400) (200)

Details of Reinforcement

ACI 318 Chapter 25.2 Placement of Reinforcement

- Cover (ACI 20.6.1)
- Horizontal spacing in beams, s_h (ACI 25.2.1)
 <u>1 inch</u>

$$\frac{d_b}{4/3} d_{agg,max}$$

 Vertical spacing in beams (ACI 25.2.2) Min 1 inch

Table 20.6.1.3.1—Specified concrete cover for cast-in-place nonprestressed concrete members

Concrete exposure	Member	Reinforcement	Specified cover, in.
Cast against and permanently in contact with ground	All	All	3
Exposed to weather		No. 6 through No. 18 bars	2
or in contact with ground	All	No. 5 bar, W31 or D31 wire, and smaller	1-1/2
	Slabs, joists,	No. 14 and No. 18 bars	1-1/2
Not exposed to weather or in contact with ground	and walls	No. 11 bar and smaller	3/4
	Beams, columns, pedestals, and tension ties	Primary reinforce- ment, stirrups, ties, spirals, and hoops	1-1/2

University of Michigan, TCAUP

Structures II

Slide 7 of 21

Details of Reinforcement

ACI 318 Chapter 25 Placement of Reinforcement

- · Chairs
- Bolsters

http://contractorsupplymagazine.com

High Chai

Reba

Continuous High Chair

Details of Reinforcement

ACI 318 Chapter 25

Minimum bend diameter

• factor x d_b

Hooks for bars in tension

- ACI Table 25.3.1
- · Inside diameter

Bends for stirrups

• ACI Table 25.3.2

Table 25.3.1—Standard hook geometry for development of deformed bars in tension

Type of standard hook	Bar size	Minimum inside bend diameter, in.	Straight extension ^[1] ℓ _{ext} in.	Type of standard hook	
	No. 3 through No. 8	6d _b 3	63 9	Point at which bar is developed	
90-degree	No. 9 through No. 11	8 <i>d</i> _b	844	90-degree bend	
hook	No. 14 and No. 18	10 <i>d</i> _b	1246	Diameter	
	No. 3 through No. 8	$6d_b$		Point at which bar is developed	
180-degree hook	No. 9 through No. 11	$8d_b$	Greater of		
	No. 14 and No. 18	10 <i>d</i> _b	$4d_b$ and 2.5 in.	Diameter bend	

¹¹A standard hook for deformed bars in tension includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

Table 25.3.2—Minimum inside bend diameters and standard hook geometry for stirrups, ties, and hoops

Type of stan- dard hook	Bar size	Minimum inside bend diameter, in.	Straight extension ^[1] <i>l</i> _{exp} in.	Type of standard hook
90-degree	No. 3 through No. 5	$4d_b$	Greater of $6d_b$ and 3 in.	d _b 90-degree bend
hook	No. 6 through No. 8	6 <i>d</i> _b	12 <i>d</i> _b	Diameter
135-degree	No. 3 through No. 5	4d _b	Greater of $6d_b$ and	135-degree bend
hook	No. 6 through No. 8	6 <i>d</i> _b	3 in.	Diameter -
180-degree	No. 3 through No. 5	4 <i>d</i> _b	Greater of	db 180-degree
hook	No. 6 through No. 8	6 <i>d</i> _b	4 <i>a</i> _b and 2.5 in.	Diameter bend

¹¹A standard hook for stirrups, ties, and hoops includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

University of Michigan, TCAUP

Structures II

Slide 9 of 21

Details of Reinforcement

ACI 318 Chapter 25

Development length of bars

- 12" min
- Based on table 25.4.2.2

Table 25.4.2.4—Modification factors for development of deformed bars and deformed wires in tension

Modification factor	Condition	Value of factor
	Lightweight concrete	0.75
Lightweight λ	Lightweight concrete, where f_{ct} is specified	In accordance with 19.2.4.3
	Normalweight concrete	1.0
D []]	Epoxy-coated or zinc and epoxy dual-coated reinforcement with clear cover less than $3d_b$ or clear spacing less than $6d_b$	1.5
$\underbrace{\underbrace{Epoxy}_{\Psi_e}}_{\Psi_e}$	Epoxy-coated or zinc and epoxy dual- coated reinforcement for all other conditions	1.2
	Uncoated or zinc-coated (galvanized) reinforcement	1.0
Size	No. 7 and larger bars	1.0
Ψ_s	No. 6 and smaller bars and deformed wires	0.8
Casting position ^[1]	More than 12 in. of fresh con- crete placed below horizontal reinforcement	1.3
Ψ_t	Other	1.0

https://www.buildinghow.com

Table 25.4.2.2—Development length for deformed bars and deformed wires in tension

Spacing and cover	No. 6 and smaller bars and deformed wires	No. 7 and larger bars
Clear spacing of bars or wires being developed or lap spliced not less than d_b , clear cover at least d_b , and stirrups or ties throughout ℓ_d not less than the Code minimum or Clear spacing of bars or wires being developed or lap spliced at least $2d_b$ and clear cover at least d_b	$\underbrace{\left(\frac{f_{y}\Psi_{t}\Psi_{c}}{25\lambda\sqrt{f_{c}^{\prime}}}\right)}_{b}d_{b}$	$\left(\frac{f_y \psi_i \psi_e}{20\lambda \sqrt{f'_c}}\right) d_b$
Other cases	$\left(\frac{3f_{y}\psi_{i}\psi_{e}}{50\lambda\sqrt{f_{c}'}}\right)d_{b}$	$\left(\frac{3f_{y}\psi_{t}\psi_{c}}{40\lambda\sqrt{f_{c}'}}\right)d_{b}$

Other Useful Tables:

					Customary Units				SI Units			
				Bar No.	Diameter (in.)	Cross- sectional Area (in. ²)	Unit Weight (lb/ft)	Diameter (mm)	Cross- sectional Area (mm ²)	Unit Weight (kg/m)		
Table A.	1 Values of M	odulus of Ela	sticity for	1 3	0.375	0.11	0.376	9.52	71	0.560		
	Normal-Wei	ght Concrete	,	4	0.500	0.20	0.668	12.70	129	0.994		
0.1	TT	CL I	Turita	5	0.625	0.31	1.043	15.88	200	1.552		
Custom	hary Units	SIC	nits	6	0.750	0.44	1.502	19.05	284	2.235		
f_c'	$\frac{E_c}{(max)}$	f_c' , (MDa)	E_c	7	0.875	0.60	2.044	22.22	387	3.042		
(psi)	(psi)	(MPa)	(MPa)	8	1.000	0.79	2.670	25.40	510	3.973		
3,000	3,140,000	20.7	21 650	9	1.128	1.00	3.400	28.65	645	5.060		
3,500	3,390,000	24.1	23 373	10	1.270	1.27	4.303	32.26	819	6.404		
1,000	3,620,000	27.6	24 959	11	1.410	1.56	5.313	35.81	1006	7.907		
,500	3,850,000	31.0	26 545	14	1.693	2.25	7.650	43.00	1452	11.384		
5,000	4,050,000	34.5	27 924	18	2.257	4.00	13.600	57.33	2581	20.238		

Table A.2 Designations, Areas, Perimeters, and Weights of Standard Bars

Jack C McCormac, 1978, Design of Reinforced Concrete,

Table A.4 Areas of Groups of StandardBars (in.²)

	Number of Bars												
Bar No.	(2)	3	4	5	6	7	8	9	10	11	12	13	1,4
· 4	0.39	0.58	0.78	0.98	1.18	1.37	1.57	1.77	1.96	2.16	2.36	2.55	2.75
5	0.61	0.91	1.23	1.53	1.84	2.15	2.45	2.76	3.07	3.37	3.68	3.99	4.30
6	0.88	1.32	1.77	2.21	2.65	3.09	3.53	3.98	4.42	4.86	5.30	5.74	6.19
7	1.20	1.80	2.41	3.01	3.61	4.21	4.81	5.41	6.01	6.61	7.22	7.82	8.42
8	1.57	2.35	3.14	3.93	4.71	5.50	6.28	7.07	7.85	8.64	9.43	10.21	11.00
9	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00
10	2.53	3.79	5.06	6.33	7.59	8.86	10.12	11.39	12.66	13.92	15.19	16.45	17.72
11	3.12	4.68	6.25	7.81	9.37	10.94	12.50	14.06	15.62	17.19	18.75	20.31	21.87
14	4.50	6.75	9.00	11.25	13.50	15.75	18.00	20.25	22.50	24.75	27.00	29.25	31.50
18	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00	44.00	48.00	52.00	56.00

University of Michigan, TCAUP

Structures II

Slide 11 of 21

Rectangular Beam Design

Two approaches:

Method 1:

Data:

- Load and Span
- Material properties f'_c, f_v
- All section dimensions: h and b

Required:

Steel area – A_s

Method 2:

Data:

- Load and Span
- Some section dimensions h or b
- Material properties f'_c, f_v
- Choose ρ

Required:

- Steel area <u>A</u>
- Beam dimensions b or h

- Data:
 - Load and Span
 - Material properties f'_{c} , f_{y}
 - All section dimensions:
 - h (based on deflection limit)
 - b = typical 12" width

Required:

Steel area – A_s

```
ACI
```

18

First estimate the slab thickness, h.

Try first the recommended minimum.

Deeper sections require less steel, but of course more concrete.

PLAN VIEW

= 60 ksi

DL = 150 pcf

= 230 psf

Support condition	Minimum h ^[1]
Simply supported	<i>ℓ</i> /20
One end continuous	\$ \$ £/24
Both ends continuous	× 5 0 l/28
Cantilever	ℓ/10,

THICKNESS, h, BASED ON DEFLECTION $h = \frac{R_{10}}{20} = \frac{18' \times 12}{20} = 10.8''$ Use 11"

- 5. Use A_s to find a
- 6. Use a to find A_s (repeat...)

$$\frac{1}{4} \frac{1}{5} = \frac{1}{4} \frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{5} = \frac{1}{5} \frac{1}{5}$$

CHOOSE BARS

One-way Slab Slab Design

7. Choose bars for A_s required:

either

choose bars and calculate spacing or

choose spacing and find bar size If the bar size changes, re-calculate to find new d. Then, re-calculate $A_s...$

Check $A_{s,min}$

(for slabs A_{s.min} from ACI Table 7.6.1.1)

Table 7.6.1.1—A _{s,}	min for nonprestressed one-way
slabs	그는 것이 아무렇게 안 많이 많이 했다.
Diff	

type	f_y , psi	A _{s,min}			
Deformed bars	< 60,000		0.0020Ag		
Deformed bars or welded wire	≥ 60,000	Greater of:	0.0018×60,000 f.Co		
reinforcement			$0.0014A_{g}$		

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} u_{S1NG} & \frac{u_{4}}{4} \\ A_{S} & 0 & 505 \end{array}, & \frac{0.2}{4S} \\ \hline 12''_{0.c.} & \frac{4S}{4S} \\ \hline \end{array} \\ \begin{array}{c} \vdots \\ u_{S1E} & \frac{4''_{0.c.}}{4S} \\ \hline \end{array} \\ \begin{array}{c} always round down \end{array} \\ \begin{array}{c} A_{S} = 0.60 \\ h^{2}/FT \end{array} > 0.505 \\ \hline \end{array} \end{array}$$

$$\begin{array}{c} \text{ALTEANIATE FOR MAX. } S = 18" & \text{MAX} \\ \hline 0.505 & A_{b}? & A_{b} = 0.75 \text{ m}^{2} \\ \hline 12'' & 18'' & \text{MO} = 0.79 \\ \hline 105E & & e 18'' & 0.c. \\ A_{5} = 0.526 \text{ m}^{2}/\text{FT} > 0.505 \end{array}$$

Check As, min As min =

One-way Slab Slab Design

