
Architecture 324 Structures II

Reinforced Concrete Beams Ultimate Strength Design (ACI 318-14) – PART III

- Rectangular Beam Design Method 2
- Non-Rectangular Beam Analysis
- Reinforced Concrete Examples
- 3D-Print Evolution (Video)

University of Michigan, TCAUP

Structures II

Slide 1 of 22

Rectangular Beam Design

Two approaches:

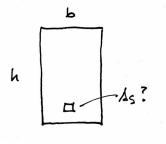
Method 1:

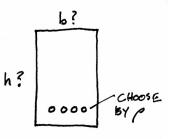
Data:

- Load and Span
- Material properties f'_c, f_v
- All section dimensions: h and b

Required:

Steel area – A_s


Method 2:


Data:

- Load and Span
- Some section dimensions h or b
- Material properties f'_c, f_y
- Choose ρ

Required:

- Steel area A_s
- Beam dimensions b and h

Rectangular Beam Design - Method 2

Data:

- Load and Span
- Some section dimensions b or h
- Material properties f'_c , f_y

Required:

- Steel area A_s
- Beam dimensions b and h
- 1. Estimate the dead load (estimate h and b) $(L/21 \le h \le L/8, h \approx L/12 \text{ and } b:h \approx 1:2 \text{ to } 2:3),$ find M_u
- 2. Choose ρ (equation assumes $\varepsilon_t = 0.0075$) 3. Calculate bd^2
- 3. Calculate bd²
- 4. Choose b and solve for d (or d and solve b)
- 5. Revise h, weight, M_u , and bd^2
- 6. Find $A_s = \rho bd$
- 7. Choose bars for ${\rm A}_{\rm s},$ determine spacing and cover, and revise d
- 8. Check that $\epsilon_t \geq 0.005$ (if not, increase h and reduce $A_s)$
- 9. Design shear reinforcement (stirrups)
- 10. Check deflection, crack control, steel development length

```
University of Michigan, TCAUP
```

Structures II

Slide 3 of 22

Rectangular Beam Design

Data:

- Load and Span
- Material properties f'_c, f_y

Required:

- Steel area A_s
- Beam dimensions b and d
- 1. Estimate the dead load (self-weight), and find M_u (h \approx L/12 and b:h \approx 1:2 to 2:3)

Table 9.3.1.1—Minimum depth of nonprestressed beams

Support condition	Minimum h ^[1]
Simply supported	€/16
One end continuous	€/18.5
Both ends continuous	€/21
Cantilever	<i>€</i> /8

¹¹Expressions applicable for normalweight concrete and $f_y = 60,000$ psi. For other cases, minimum h shall be modified in accordance with 9.3.1.1.1 through 9.3.1.1.3, as appropriate.

2. Choose ρ (equation assumes $\mathcal{E}_{t} = 0.0075$)

f'c = 3000 psi fy = 60 ksi DL = 2 klf + beam $LL = 2 \times 20 \text{ k}$ $DL = 2 \times 20 \text{ k}$ $DL = 2 \times 20 \text{ k}$

 $M_u = \frac{(\gamma_{DL} w_{DL} + \gamma_{LL} w_{LL})l^2}{8}$

 M_u

 $\varphi \rho f_{\nu} (1 - 0.59 \rho (f y / f_c))$

 $A_s = \rho b d$

 $\rho =$

a =

 $bd^{2} = -$

Assume
$$h \approx \frac{L}{12} = \frac{360^{\circ''}}{12} = 30^{\circ''}$$

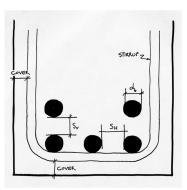
Assume bith $\approx 1:2$... $b \approx 15^{\circ''}$
BEAM PL = 150 $\frac{15 \times 30}{144} = 469$ PLF

ESTIMATE MU

$$M_{U} = P_{0} + \frac{wf^{2}}{8}$$

$$= 1.6(20)(10') + \frac{1.2(2.469 \text{ KGF})(30')^{2}}{8}$$

$$= 320 + 333.3 = 653.3 \text{ K} - 7$$


$$P = \frac{\beta_1 f_2^2}{4 f_3^2} = \frac{0.85(3)}{4(60)} = 0.010$$

Rectangular Beam Design cont.

3. Calculate bd ²	$bd^{2} = \frac{H_{u}}{\phi \rho f_{m} (1 - 0.59 \rho (\frac{f_{3}}{f_{1e}}))}$ $bd^{2} = \frac{653.3 (12)}{0.01(0.9)60 [1 - 0.59(0.01)(\frac{60}{3})]}$ $bd^{2} = \frac{7840}{0.573 (0.882)} = 15492 \text{ m}^{3}$							
 Choose b and solve for d (or d and solve for b) b is based on form size – matches column size h ≈ L/12, b:h ≈ 1:2 to 2:3 Revise h, weight, M_u, and bd² 	TRY b d h≈1.12d A 14" 33.27" 38" 532 15" 32.14" 34" 540 16" 31.11" 35" 560 CHOOSE 15 × 36							
University of Michigan, TCAUP Structure	es II Slide 5 of 22							
Rectangular Beam Design cont.								
5. Revise h, weight, M_u , and bd^2	USE 15×36 REVISE PL = $150 \frac{540}{144} = 563 \text{PLF}$ CHECK MU MU = $320 + \frac{1.2(2.563) 30^2}{8} = 666 \text{ K-1}$ REVISE bel bel $2 = \frac{6666(12)}{0.505} = 15814 \text{ m}^3$ FOR $b = 15''$ $d = 32.5''$							
6. Find $A_s = \rho b d$	$A_5 = p b d = (0.01)(15")(32.5")$ $A_5 = 4.87 m^2$							

Rectangular Beam Design

7. Choose bars for A_s , determine spacing and cover, and revise d

If bars do not fit in one layer, d is measured to the centroid of the pattern.

$\overline{x} = \frac{\sum \mathbf{A} \times d_x}{\sum \mathbf{A} \times d_x}$					Table A	.4 Areas	of Group	s of Stand	lardBars	(in. ²)				
$\sum \mathbf{A}$			Number of Bars											
	Bar No.	2	3	4	5	6	7	8	9	10	11	12	13	1,4
	4	0.39	0.58	0.78	0.98	1.18	1.37	1.57	1.77	1.96	2.16	2.36	2.55	2.75
	5	0.61	0.91	1.23	1.53	1.84	2.15	2.45	2.76	3.07	3.37	3.68	3.99	4.30
	6	0.88	1.32	1.77	2.21	2.65	3.09	3.53	3.98	4.42	4.86	5.30	5.74	6.19
	7	1.20	1.80	2.41	3.01	3.61	4.21	4.81	5.41	6.01	6.61	7.22	7.82	8.42
	8	1.57	2.35	3.14	3.93	4.71	5.50	6.28	7.07	7.85	8.64	9.43	10.21	11.00
_	→ 9	2.00	3.00	4.00	(5.00)	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00
	10	2.53	3.79	5.06	6.33	7.59	8.86	10.12	11.39	12.66	13.92	15.19	16.45	17.72
	11	3.12	4.68	6.25	7.81	9.37	10.94	12.50	14.06	15.62	17.19	18.75	20.31	21.87
Jack C McCormac, 1978	14	4.50	6.75	9.00	11.25	13.50	15.75	18.00	20.25	22.50	24.75	27.00	29.25	31.50
Design of Reinforced Concrete,	18	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00	44.00	48.00	52.00	56.00
University of Michigan, TCA	UP				Stru	ictures II							Slide 7	of 22

6=15"

Rectangular Beam Design

 Choose bars for A_s and determine spacing and cover, recheck h and weight

Make final check of M_n using final d, and check that $M_u \le \phi M_n$

- 8. Check that $\epsilon_t \ge 0.005$ (if not, increase h and reduce A_s)
- 9. Design shear reinforcement (stirrups)
- 10. Check deflection, crack control, steel development length

$$d = 33.436''$$

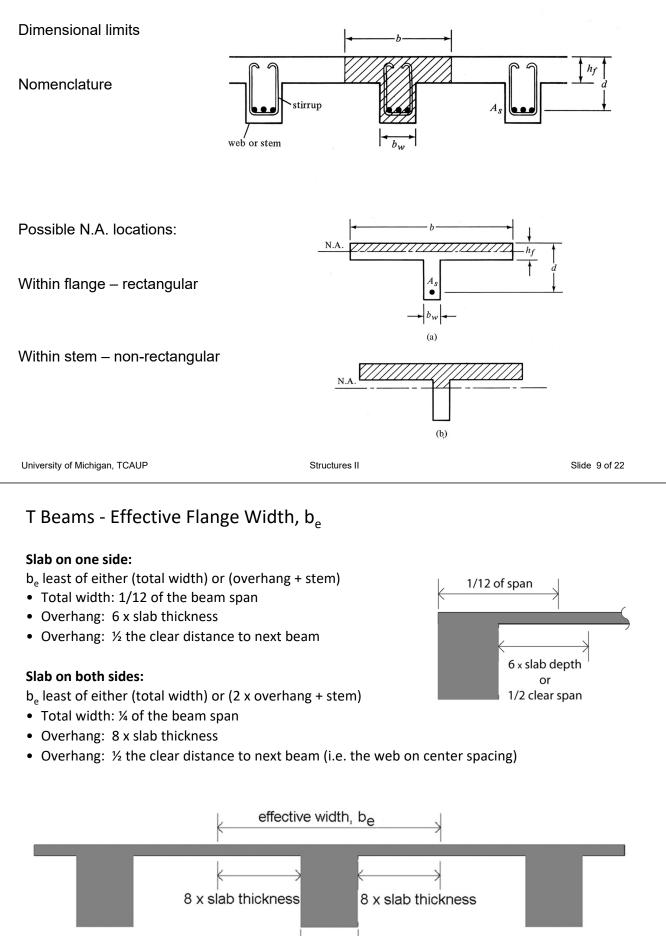
$$d = \frac{A_{5}f_{y}}{.85f_{c}} = \frac{5(60)}{.85(3)15} = 7.843''$$

$$H_{n} = A_{5}f_{y} \left(d - \frac{d}{2}\right) = 5(60)(33.436 - \frac{7.843}{2})$$

$$H_{n} = 8854 \text{ K-}'' = 737.8 \text{ K-}1$$

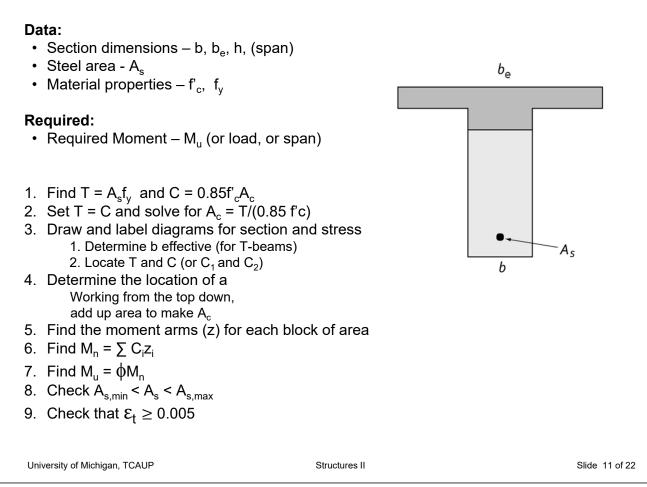
$$\phi H_{n} = 0.9(737.8) = 664 \text{ K-}1$$

$$M_{0} = 653.3 < 664 \text{ V oK}$$


$$C = \frac{d}{\beta_{1}} = \frac{7.843''}{0.85} = 9.227''$$

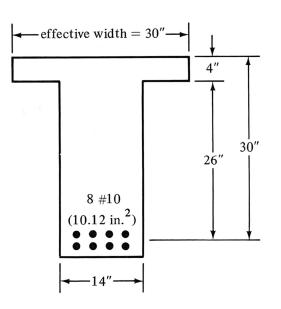
$$E_{t} = \frac{d-c}{C}(0.003)$$

$$E_{t} = 33.436 - 9.227 (0.003)$$


$$E_{t} = 0.00787 > 0.005 \text{ VeK}$$

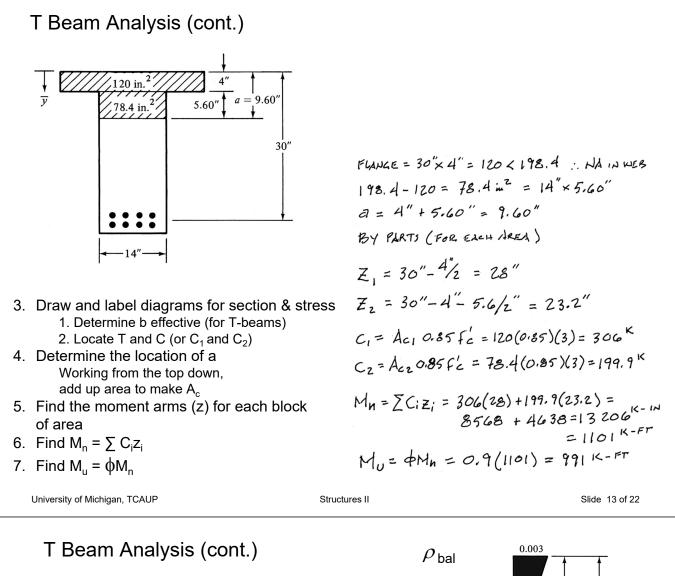
T Beams

b₩


Non-Rectangular Beam Analysis

T Beam Analysis

Given: $f'_c = 3000 \text{ psi}$ $f_y = 50 \text{ ksi}$ dimensions. Use $b_{eff} = 30$ "

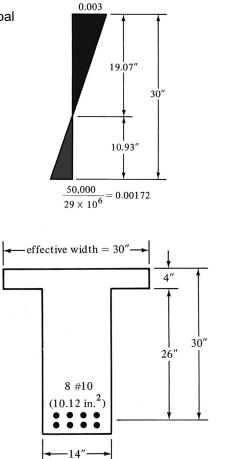

Req'd: Moment capacity, Mu

- 1. Find T = $A_s f_y$ and C = 0.85f'_c A_c
- 2. Set T = C and solve for $A_c = T/(0.85 \text{ f'c})$

$$T = A_{s} f_{ay} = 10.12 \text{ m}^{2} 50^{\text{Ks}} = 506^{\text{K}}$$

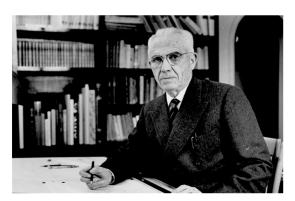
$$A_{c} = \frac{T}{0.85} f_{c} = \frac{506^{\text{K}}}{0.85 3^{\text{Ks}}} = 198.4 \text{ m}^{2}$$

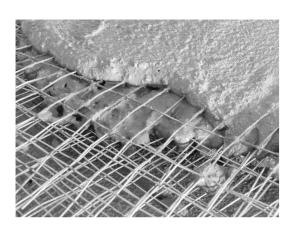
$$ho_{\rm max}$$
 = 0.75 $ho_{\rm bal}$

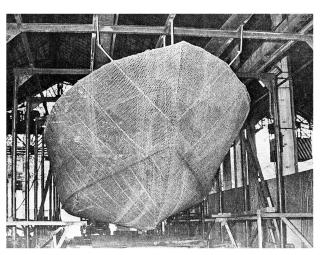

$$a_{bal} = beta c_{bal} = 0.85 (19.07") = 16.21"$$

$$Ac = (4") (30") + (12.21") (14") = 291 in^{2}$$

$$C_{bal} = (0.85) (3) (291) = 742^{k}$$


$$T_{max} = 0.75 C_{bal} = (0.75) (742) = 556^{k}$$


$$T_{used} = A_s f_v = (10.12) (50) = 506^k < 556^k ok$$

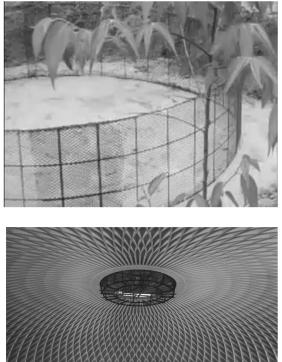


Ferrocement

- Pioneered by Pier Luigi Nervi
- Dense, small gage reinforcement
- More flexible shapes no formwork
- Well suited for thin shells
- Less cracking

University of Michigan, TCAUP

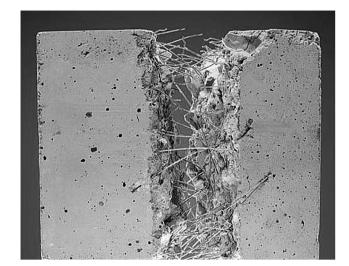
Structures II


Slide 15 of 22

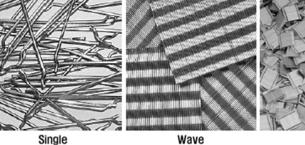
Ferrocement

- Pioneered by Nervi
- Dense, small gage reinforcement
- More flexible shapes no formwork
- Well suited for thin shells
- Less cracking
- Low-tech applications

Priory Benedictine Church, Missouri, 1956. Architect Gyo Obata


Palazetto dello Sport, Rome, 1957. P.L. Nervi

Fiber Reinforced Concrete


Several different fiber types:

- Steel (SFRC) ٠
- Glass (GFRC)
- Plastic e.g. polypropylene ٠
- Carbon ٠
- Organic e.g. bamboo ٠

Better crack control Secondary reinforcement



Bundle

Slide 17 of 22

University of Michigan, TCAUP

Structures II

University of Michigan, TCAUP

Structures II

Slide 19 of 22

Textile Reinforced Concrete (TRC)

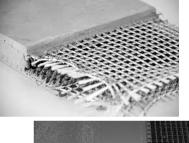
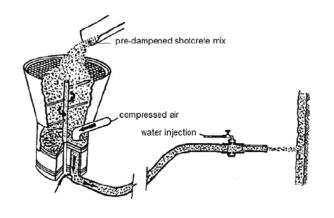


Figure 12: distTEX: special spacers for textile grids [photo: Frank Schladitz, TU Dresden]

Figure 13: Manufacturing of the TRC hypar-shell layer by layer by shotcrete [photo: © RWTH Aachen], [38]


Figure 10: Demolding of a hardened shell element in the concrete yard in Kahla/Saxony [photo: Daniel Ehlig, TU Dresden]

Shotcrete

- Pneumatically applied
- High velocity
- Can include fiber
- Applied to backing
- Reinforced with bars
- Soil stabilization, tunnels

University of Michigan, TCAUP

Structures II

Slide 21 of 22

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><image><text><text><text><text><text><text><text>

https://www.youtube.com/watch?v=awpmJriWcEw