Masonry

- TMS 402
- Rational Approach
- Empirical Approach

Chilehaus, Hamburg Arch: Fritz Höger, 1924

University of Michigan, TCAUP

Structures II

Slide 1 of 28

Mortar Types

Types M, S, N, O

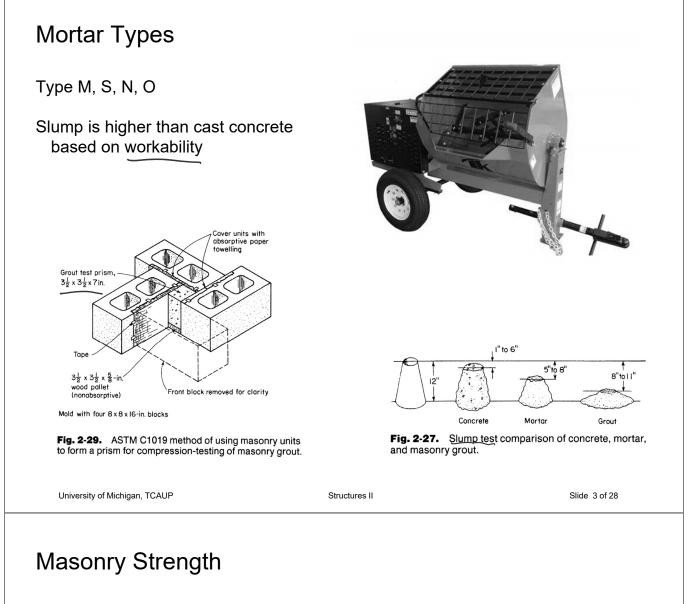
The following mortar designations took effect in the mid-1950's:

M	а	S	0	Ν	w	0	r	<u>K</u>
strong	est							weakest

Table 2-3. Guide to the Selection of Mortar Type*

		Mortar type			
Location	Building segment	Recommended	Alternative		
Exterior, above grade	Load-bearing walls Non-load-bearing walls Parapet walls	N O** N	S or M N or S S		
Exterior, at or below grade	Foundation walls, retaining walls, manholes, sewers, pavements, walks, and patios	<u>.st</u>	M or N†		
Interior	Load-bearing walls Non-load-bearing partitions	N O	S or M N		

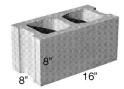
*Adapted from ASTM C270. This table does not provide for specialized mortar uses, such as chimney, reinforced masonry, and acid-resistant mortars. **Type O mortar is recommended for use where the masonry is unlikely to be frozen when saturated or unlikely to be subjected to high winds or other significant lateral loads. Type N or S mortar should be used in other cases. fMasonry exposed to weather in a nominally horizontal surface is extremely vulnerable to weathering. Mortar for such masonry should be selected with due caution.


Note: For tuckpointing mortar, see "Tuckpointing," Chapter 9.

Relative Parts by Volume

mortar type	Portland cement	lime	sand
M	1	¹ 4	3 ¹ 2
S	1	¹ 2	3 ¹ 2 4 ¹ 2
N	1	1	6
0	1	2	9
—I<			

sum should equal 1/3 of sand volume (assuming that sand has void ratio of 1 in 3)


Masonry strength, f'm, based on unit strength, fu, and mortar type

Clay Masonry

Required Net Area Co of Clay Masor	For Net Area Compressive Strength of Masonry (psi)	
When Used With Type M or S Mortar		
1,700	2,100	1,000
3,350	4,150	1 ,500
4,950	6,200	2,000
6,600	8,250	2,500
8,250	10,300	3,000
9,900 —-		3,500
11,500		4,000

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Concrete Masonry

Required Net Area Co of Concrete Mas	f'm For Net Area	
When Used With Type M or S Mortar	Compressive Strength of Masonry (psi)	
1,250	1,300	1,000
1,900	2,150	1,500
2,800	3,050	2,000
3,750	4,050	2,500
4,800	5,250	3,000

(From International Building Code 2000 and Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Constructive Properties

Typical Values							
Property		Clay Masonry	Concrete Masonry				
Unit strength		<u>8000 psi</u>	2000 psi				
Type N morter	f'_m	<u>244</u> 0 psi	1750 psi				
T <u>ype N</u> mortar	E_m	<u>1.70x1</u> 0 ⁶ psi	1.58x10 ⁶ psi				
Type M or S mortar	f'_m	<u>2920 psi</u>	2000 psi				
Type M or S mortar	E_m	2.05x10 ⁶ psi	1.80x10 ⁶ psi				

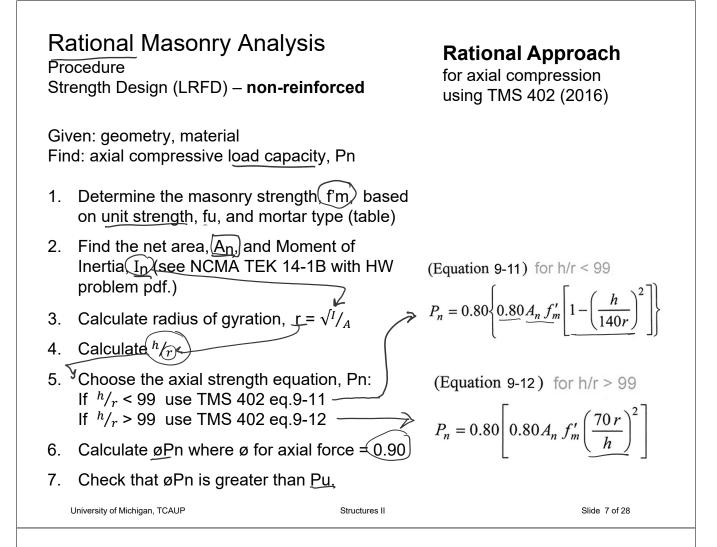
Concrete Clay Property Masonry Masonry Modulus of Elasticity, E_m $700 f'_{m}$ $900f'_{m}$ Shear Modulus, G $0.4E_m$ $0.4E_m$ $0.7 \ x 10^{-7}$ $2.5x10^{-7}$ Coefficient of Creep psi psi

University of Michigan, TCAUP

Structures II

Slide 5 of 28

Analysis and Design

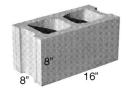

Empirical approach

based on experience limits on lateral loading limits on height limits on eccentricity (basically, no flexure) non-reinforced f = FA

Rational approach

based on Strength Design (LRFD) either reinforced or non-reinforced limited by strength

Masonry Strength


Masonry strength, f'm, based on unit strength, fu, and mortar type

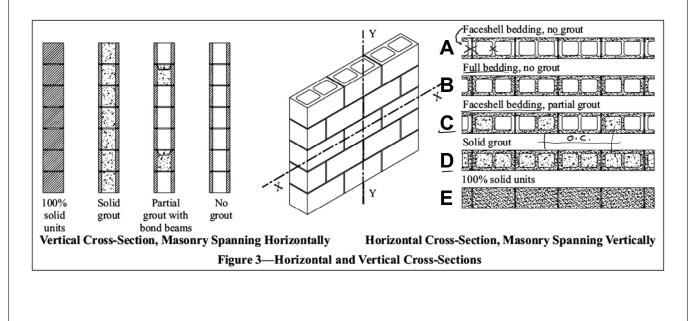
Clay Masonry

Required Net Area Co of Clay Masor	f'm For Net Area Compressive	
When Used With Type M or S Mortar	Strength of Masonry (psi)	
1,700	2,100	1,000
3,350	4,150	1,500
4,950	6,200	2,000
6,600	8,250	2,500
8,250	10,300	3,000
9,900		3,500
11,500		4,000

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Concrete Masonry

Required Net Area Co of Concrete Mas	For Net Area	
When Used With Type M or S Mortar	Compressive Strength of Masonry (psi)	
1,250	1,300	1,000
1,900	2,150	1,500
2,800	3,050	2,000
3,750	4,050	2,500
4,800	5,250	3,000


(From International Building Code 2000 and Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Rational Masonry Analysis Procedure Strength Design – **non-reinforced**

Rational Approach

for axial compression using TMS 402 (2016)

Section Properties of Concrete Masonry Walls NCMA TEK 14 – 1B (attached to problem description, and also on Canvas, and on NCMA website)

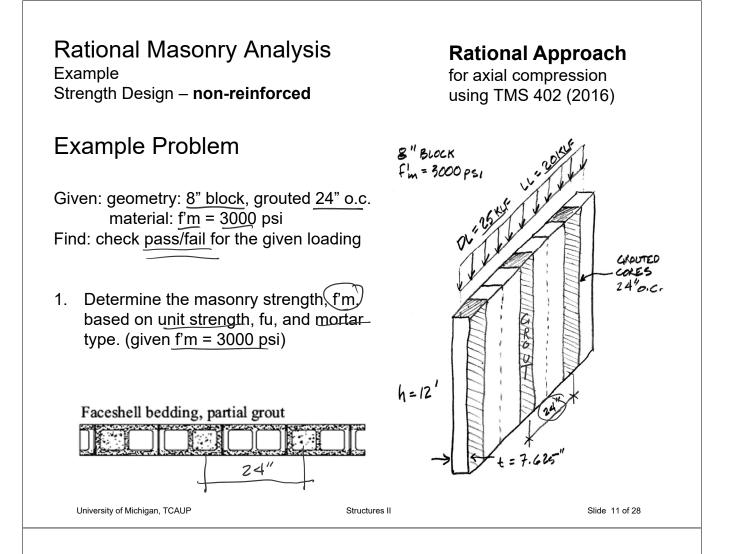
Structures II

Rational Masonry Analysis

University of Michigan, TCAUP

Rational Approach

Slide 9 of 28


Procedure Strength Design – **non-reinforced** for axial compression using TMS 402 (2016)

Section Properties of Concrete Masonry Walls <u>NCMA TEK 14 – 1B</u> (attached to problem description and also on Canvas and on NCMA website)

Table 3—8-inch (203-mm)	Single Wythe	Walls, $1^{1}/_{4}$ in.	(32 mm) Fa	ace Shells (standard)

	3a: H	orizontal Section	Properties (Masonry Sp	anning Ver	tically)
		Grout	Mortar	Net cros	s-sectional j	propertiesA
	Unit	spacing (in.)	bedding	A_n (in. ² /ft)	I_n (in. ⁴ /ft)	S_n (in. ³ /ft)
Α	Hollow	No grout	Face shell	30.0	308.7	81.0
В	Hollow	No grout	Full	41.5	334.0	87.6
D/E	100% so	lid/solidly grouted	Full	91.5	443.3	116.3
С	Hollow	16	Face shell	62.0	378.6	99.3
	Hollow	24	Face shell	51.3	355.3	93.2
	Hollow	32	Face shell	46.0	343.7	90.1
	Hollow	40	Face shell	42.8	336.7	88.3
	Hollow	48	Face shell	40.7	332.0	87.1
	Hollow	72	Face shell	37.1	324.3	85.0
L	Hollow	96	Face shell	35.3	320.4	84.0
	Hollow	120	Face shell	34.3	318.0	83.4

University of Michigan, TCAUP

Rational Masonry Analysis Example Strength Design – non-reinforced

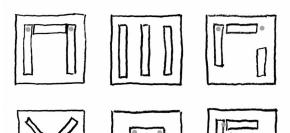
Rational Approach

for axial compression using TMS 402 (2016)

2. Find the net area, A_n , and Moment of Inertia, I_n (see NCMA TEK 14-1B)

3a: Ho	orizontal Section	Properties (Masonry Sp	anning Ver	tically)
	Grout	Mortar	Net cros	s-sectional p	propertiesA
Unit	spacing (in.)	bedding	\underline{A}_n (in. ² /ft)	I_n (in. ⁴ /ft)	S_n (in. ³ /ft)
Hollow	No grout	Face shell	30.0	308.7	81.0
Hollow	No grout	Full	41.5	334.0	87.6
100% so	lid/solidly grouted	Full	91.5	443.3	116.3
Hollow	16	Face shell	62.0	378.6	99.3
Hollow	24 O.C.	Face shell	51.3	355.3	93.2
Hollow	32	Face shell	46.0	343.7	90.1
Hollow	40	Face shell	42.8	336.7	88.3
Hollow	48	Face shell	40.7	332.0	87.1
Hollow	72	Face shell	37.1	324.3	85.0
Hollow	96	Face shell	35.3	320.4	84.0
Hollow	120	Face shell	34.3	318.0	83.4

Table 3-8-inch (203-mm) Single Wythe Walls, 11/4 in. (32 mm) Face Shells (standard)


University of Michigan, TCAUP

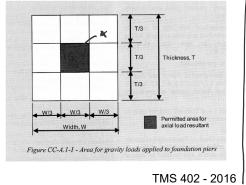
Rational Masonry Analysis Example Strength Design – non-reinforced	Rational Approach for axial compression using TMS 402 (2016)
3. Calculate $r = \sqrt{I}/A$	- 18 8" SINGLE WYTHE
4. Calculate h/r	BLOCK - GROUT E 24" o.c FACE SHELL MORTAR 51.3 in^2 $I_n = 355.3 \text{ in}^4$ (NET) $V = 7\frac{355.3}{51.3} = 1.952 \text{ in}^4$ $\frac{2'(12)''}{1.952''} = 73.75 < 99 : EQ 9-11$
5. Choose the axial strength equation, Pn: \rightarrow If $h/r < 99$ use TMS 402 eq.9-11 If $h/r > 99$ use TMS 402 eq.9-12	(Equation 9-11) for h/r < 99 $P_n = 0.80 \left\{ 0.80 A_n f'_m \left[1 - \left(\frac{h}{140r} \right)^2 \right] \right\}$
University of Michigan, TCAUP Structures I	I Slide 13 of 28
Rational Masonry Analysis Example Strength Design – non-reinforced	Rational Approach for axial compression using TMS 402 (2016)
Given: geometry: 8" block, grouted 24" o.c. material: f'm = 3000 psi Area An = 51.3 in ² /ft height h = 12 ft r = 1.952 in \checkmark	(Equation 9-11) for h/r < 99 $P_n = 0.80 \left\{ 0.80 A_n f'_m \left[1 - \left(\frac{h}{140r}\right)^2 \right] \right\}$
6. Calculate øPn where ø for axial force = 0.90	$h = 0.8 \left[0.8 \operatorname{An}_{n} f_{m}^{\prime} \left(1 - \left(\frac{h}{140 \mathrm{r}} \right)^{2} \right) \right]$ $h = 0.8 \left[0.8 \left(\frac{51.3}{51.3} \right) \left(\frac{3}{3} \right) \left(1 - \left(\frac{144^{\prime\prime}}{140(1.952)} \right)^{2} \right) \right]$ $h = 0.8 \left[123.12 - 0.7223 \right] = \frac{71.4^{\prime\prime}}{7} + 7$
	$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} \frac{\langle x_{LF} - \partial y_{LL} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{LF} - \partial y_{LL} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} ^{2}} = \frac{\partial}{\partial t} \frac{\langle x_{FT} - \partial y_{FT} \rangle}{ x_{FT} - \partial y_{FT} \rangle}$

Lateral Force Resistance

Stability requires at least 2 points of intersection.

Force is more evenly resisted with centroid of walls in the kern of slab

University of Michigan, TCAUP


Structures II

Slide 15 of 28

Empirical Approach

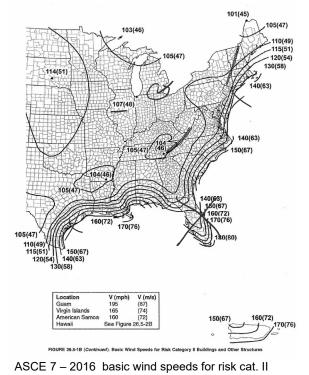
TMS 402-16 Tab. CC A.1.1 Checklist for use of empirical design

foundation:

COMMENTARY

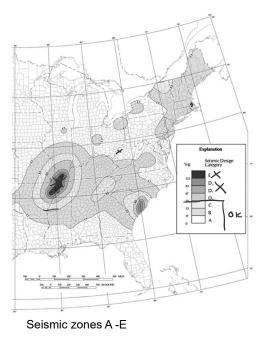
Table CC-A.1.1 — Checklist for use of Appendix A – Empirical Design of Masonry

1.	Risk Category IV structures, or	r portions thereof, are not permit	tted to be designed using Appendix A.				
2.	Partitions are not permitted to be designed using Appendix A.						
3.	Use of empirical design is limited based on Seismic Design Category, as described in the following table.						
	Seismic Design Category	Participating Walls	Non-Participating Walls, except partition walls				
	A	Allowed by Appendix A	Allowed by Appendix A				
	В	Not Allowed	Allowed by Appendix A				
	С	Not Allowed	With prescriptive reinforcement per 7.4.3.1 ¹				
	D, E, and F	Not Allowed	Not Allowed				
	¹ Lap splices are required to be	¹ Lap splices are required to be designed and detailed in accordance with the requirements of Chapters 8 or 9.					
4.	Use of empirical design is limited based on wind speed at the project site, as described in Code A.1.2.3 and Code Table A.1.1.						
5.	If wind uplift on roofs result in net tension, empirical design is not permitted (A.8.3.1).						
6.	Loads used in the design of masonry must be listed on the design drawings (1.2.1b).						
7.	Details of anchorage to structural frames must be included in the design drawings (1.2.1e).						
8.	The design is required to include provisions for volume change (1.2.1h). The design drawings are required to include the locations and sizing of expansion, control, and isolation joints.						
9.	If walls are connected to structural frames, the connections and walls are required to be designed to resist the interconnecting forces and to accommodate deflections (4.4). This provision requires a lateral load and uplift analysis for exterior walls that receive wind load and are supported by or are supporting a frame or roofing system.						
10.	Masonry not laid in running bond (for example, stack bond masonry) is required to have horizontal reinforcement (4.5).						
11.	A project quality assurance plan is required (3.1) with minimum requirements given in TMS 602 Tables 3 and 4 for Quality Assurance Level 1.						
12.	The resultant of gravity loads must be determined and assured to be located within certain limitations for walls and piers (A.1.2.1).						
13.	Ensure compliance of the design with prescriptive floor, roof, and wall-to-structural framing anchorage requirements, as well as other anchorage requirements (A.8.3 and A.8.4).						
14.	Type N mortar is not permitted for foundation walls (A.6.3.1(g)).						
15.	Design shear wall lengths, spacings, and orientations to meet the requirements of Code A.3.1.						


University of Michigan, TCAUP

Empirical Approach	ASCE-7	Table 1.5-1 Risk Category of Buildings and Other Structures for Flood, Wind, Snow, Earthquake, and Ice Loads			
Risk Catagories:	1762-7	Use or Occupancy of Buildings and Structures	Risk Category		
ASCE – 7		Buildings and other structures that represent low risk to human life in the event of failure	I		
category IV_is "not permitted"		All buildings and other structures except those listed in Risk Categories I, III, and IV	п		
with empirical approach		Buildings and other structures, the failure of which could pose a substantial risk to human life	ш		
		Buildings and other structures, not included in Risk Category IV, with potential to cause a substantial economic impact and/or mass disruption of day-to-day civilian life in the event of failure			
		Buildings and other structures not included in Risk Category IV (including, but not limited to, facilities that manufacture, process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous chemicals, hazardous waste, or explosives) containing toxic or explosive substances where the quantity of the material exceeds a threshold quantity established by the Authority Having Jurisdiction and is sufficient to pose a threat to the public if released ^a			
		Buildings and other structures designated as essential facilities	<u> </u>		
		Buildings and other structures, the <u>failure of which could</u> pose a substantial hazard to the community Buildings and other structures (including, but not limited to, facilities that manufacture, process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous chemicals, or hazardous waste) containing sufficient quantities of highly toxic substances where the quantity of the material exceeds a threshold quantity established by the Authority Having Jurisdiction and is sufficient to pose a threat to the public if released ^a			
		Buildings and other structures required to maintain the functionality of other Risk Category IV structures			
University of Michigan, TCAUP	Structures	II Slide	17 of 28		

Empirical Approach


Wind limitations:

 $\widehat{\text{Basic wind speed}} \leq \underbrace{115 \text{ mph}}_{\text{(see TMS 402-16 Tab. A.1.1)}}$

Seismic limitations:

Can generally be used for Seismic Design Category (SDC) A, B, or C, or only A if part of the seismic lateral force resisting system.

Empirical Design of Masonry TMS 402-16

Height limits by wind speed and application

		Basic Wind Speed, mph (mps) ¹			
Element Description	Building Height, ft (m)	Less than or equal to 115 (51)	Over 115 (51) and less than or equal to-120 (54)	Over 120 (54) and less than or equal to 125 (56)	Over 125 (56)
Masonry elements that are part of he lateral-force-resisting system	35 (11) and less		Permitted		Not Permitted
	Over 180 (55)		Not Pe	rmitted	
Interior masonry loadbearing elements that are not part of the	Over 60 (18) and less than or equal to 180 (55)	Permitted		Not Permitted	
ateral-force-resisting system in puildings other than enclosed as defined by ASCE 7	Over 35 (11) and less than or equal to 60 (18)	1) and r equal Permitted No. 18)		e permiting	ermitted
(A) Control (Control (Contro) (Control (Con	35 (11) and less	Anno Anno Anno Anno Anno Anno Anno Anno	Permitted	1.589	Not Permitted
人名英格兰 人名英格兰人姓氏法尔尔 化乙基基金 人名英格兰人姓氏克尔尔 化合金化合金 人名英格兰人姓氏克尔尔	Over 180 (55)		Not Pe	ermitted	
Exterior masonry elements that are not part of the lateral-force-resisting	Over 60 (18) and less than or equal to 180 (55)	Permitted		Not Permitted	
system which is in the second	Over 35 (11) and less than or equal to 60 (18)	Perr	nitted	Not Pe	ermitted
Exterior masonry elements	35 (11) and less		Permitted		Not Permitted
Basic wind speed as given in ASCE	7				

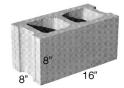
Empirical Design of Masonry TEK 14-8B (also TMS 402 – Tab. A.5.1) International Building Code (IBC) Limitations:

h

- 1. Lateral support requirements
- 2. Location of gravity load (in middle 1/3 of wall)
- 3. Maximum unreinforced spans

Table 2—Wall Lateral Support Requirements (ref. 1)			Table 3—Maximur	n Unreinf	orced Wa	ll Spans, f	t (m) ^A
Ν	Maximum wall le		Wall thickness, in. (mr	n) 6 (152)	8 (203)	10 (254)	12 (305)
	thickness or he		Bearing walls	-	-		
Construction (unreinforced)	thickness rat	tio ^A	Solid or solid grouted				
Bearing walls			All other	9 (2.7) ^B	12 (3.7)	15 (4.5)	18 (5.5)
Solid units or solid grouted	20	1.	Nonbearing walls				
All others	18	h/E	Exterior		12 (3.7)		
Nonbearing walls		e	Interior	18 (5.5)	24 (7.3)	30 (9.1)	36 (11)
Exterior	18		Cantilever Walls ^C				
Interior	36		Solid	3 (0.9)	4 (1.2)	5 (1.5)	6 (1.8)
Cantilever walls ^B			Hollow	2 (0.6)	2.6 (0.8)	3.3 (1.0)	4 (1.2)
Solid	6		Parapets C	1.5 (0.5)	2 (0.6)	2.5 (0.8)	3 (0.9)
Hollow	4		A Note that Def 6 inc	hudaa mad	lifed man	inomonto f	on walls
Parapets (8-in. (203-mm) thick min.) ^E	3 3		^A Note that Ref. 6 inc with openings.	nudes moc	imea requ	frements 1	or wans
A Ratios are determined using nomina	al dimensions. Fo	or multi-	^B Unreinforced 6-in. (1	52-mm) tl	nick bearin	g walls are	e limited
wythe walls where wythes are bond			to one story in height	t.			
the thickness is the nominal wall thic	kness. When mu	ltiwythe	^C For these cases, span	s are maxi	mum wall	heights.	
walls are bonded by metal wall tie							
as the sum of the wythe thicknesse							
includes modified requirements for							
^B The ratios are maximum height-to	 thickness ratios 	and do					
not limit wall length.							
University of Michigan, TCAUP		Stru	ictures II			Slide 20 of	28

Masonry Strength


Masonry strength, f'm, based on unit strength, fu, and mortar type

Clay Masonry

Required Net Area C of Clay Masor	f'm For Net Area Compressive	
When Used With Type M or S Mortar	When Used With Type N Mortar	Strength of Masonry (psi)
1,700	2,100	1,000
3,350	4,150	1,500
4,950	6,200	2,000
6,600	8,250	2,500
8,250	10,300	3,000
9,900		3,500
11,500		4,000

(From Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

Concrete Masonry

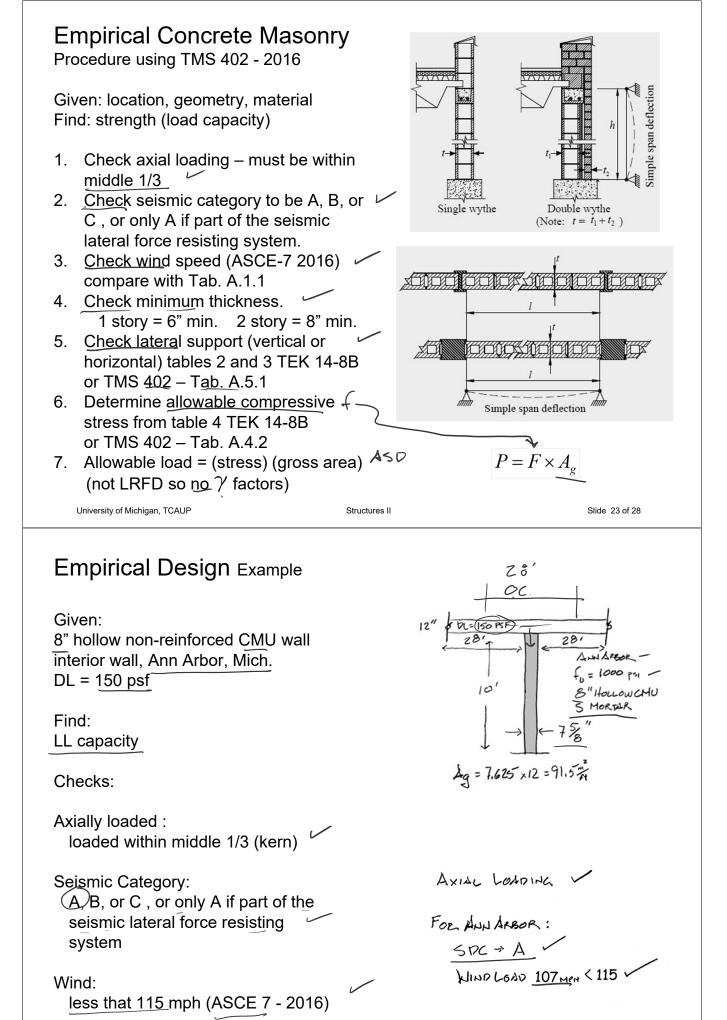
Required Net Area Co of Concrete Mas	f'm For Net Area	
When Used With Type M or S Mortar	When Used With Type N Mortar	Compressive Strength of Masonry (psi)
1,250	1,300	1,000
1,900	2,150	1,500
2,800	3,050	2,000
3,750	4,050	2,500
4,800	5,250	3,000

(From International Building Code 2000 and Masonry Standards Joint Committee Specifications for Masonry Structures, ACI 530.1/ASCE 6/TMS 602-99)

University of Michigan, TCAUP

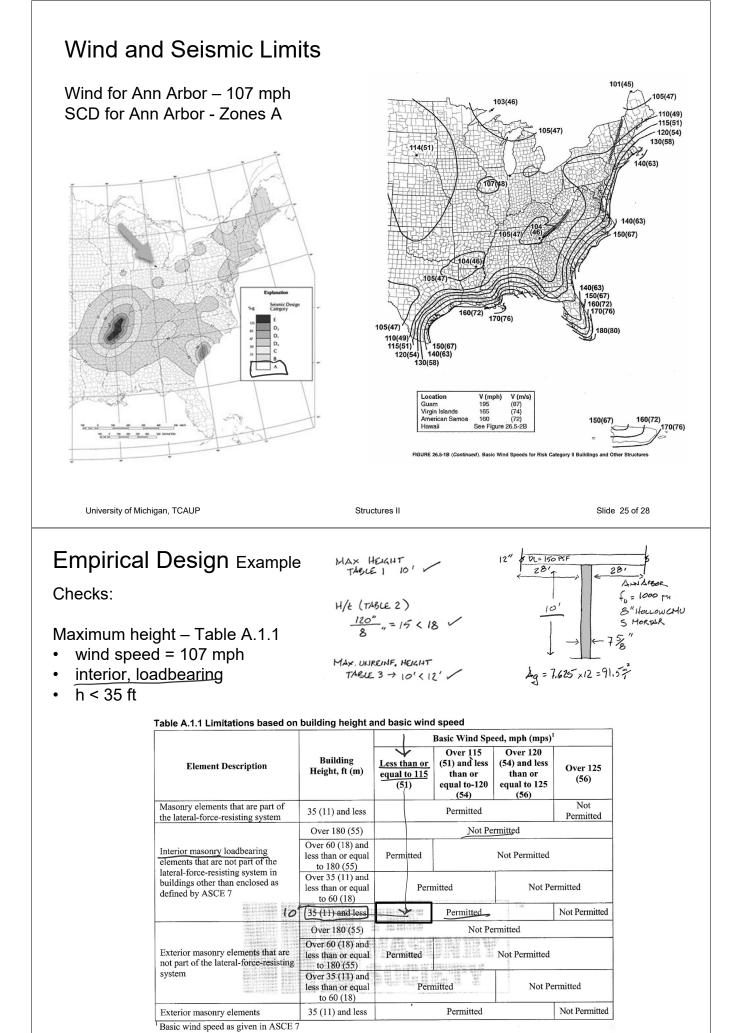
Structures II

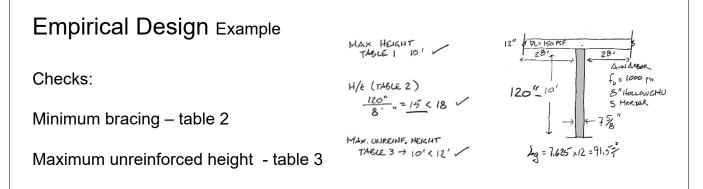
Slide 21 of 28


Empirical Design of Masonry TEK 14-8B (also TMS 402 – Tab. A.4.2) Allowable compressive stress of concrete masonry:

Solid or solidly grouted walls

Table 4—Allowable C Empirical Desig	-	ess for			
All	Allowable compressive stresses				
b	ased on gross ci	oss-sectional			
	-	(MPa) ^A			
Gross area compressive	Type M or S	Type N			
strength of unit, psi (MPa)	mortar	mortar			
Solid and Solidly Grouted M Solid concrete brick:					
F 8,000 (55) or greater	350 (2.41)	300 (2.07)			
4,500 (31)	225)(1.55)				
2,500 (17)	160 (1.10)	140 (0.97)			
1,500 (10)	115 (0.79)	100 (0.69)			
Grouted concrete masonry:					
4,500 (31) or greater	225 (1.55)	200 (1.38)			
2,500 (17)	160 (1.10)	140 (0.97)			
1,500 (10)	115 (0.79)	100 (0.69)			
Solid concrete masonry units:					
3,000 (21) or greater	225 (1.55)	200 (1.38)			
2,000 (14)	160 (1.10)	140 (0.97)			
1,200 (8.3)	115 (0.79)	100 (0.69)			
Hollow walls (noncomposite a	nasonry bonded	l ^B):			
Solid units:					
2,500 (17) or greater	160 (1.10)	140 (0.97)			
1,500 (10)	115 (0.79)	100 (0.69)			


Hollow unit walls


1	Allowable compres based on gross cr area, psi	oss-sectional
Gross area compressive	Type M or S	
strength of unit, psi (MPa)	mortar	mortar
Hollow Unit Masonry (Un	ite Complying W	
C 90-06 or Later) (ref. 6) ^C		III ASI M
Hollow loadbearing CMU, t		
2,000 (14) or greater		. 120 (0.83)
1,500 (10)	115 (0.79)	
1,000 (6.9)	75 (0.52)	- ·
700 (4.8)		55 (0.38)
Hollow loadbearing CMU, 8		
2,000 (14) or greater		
1,500 (10)	105 (0.72)	
1.000 (6.9)	65 (0.49)	· /
700 (4.8)	55 (0.38)	50 (0.35)
Hollow loadbearing CMU,	· /	
2,000 (14) or greater	115 (0.79)	
1,500 (10)	95 (0.66)	
1,000 (6.9)	60 (0.41)	
700 (4.8)	50 (0.35)	45 (0.31)
Hollow walls (noncomposit		
$t \le 8$ in. (203 mm) ^D	75 (0.52)	70 (0.48)
$8 \le t \le 12$ in (203 to 305)		
$t \ge 12 \text{ in } (305 \text{ m.m})^{\text{D}}$	60 (0.41)	55 (0.38)

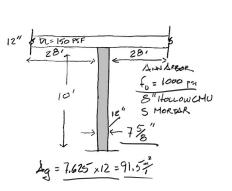
University of Michigan, TCAUP

Structures II

Table 2—Wall Lateral Support Requirements (ref. 1)		Table 3— <u>Maximum</u> Unreinforced Wall Spans, ft (m) ⁴ / ₄				
	Maximum wall length-to	The second se	n) 6 (152)	8 (203)	10 (254)	12 (305)
	thickness or height-to	Bearing walls	_			
Construction (unreinforced)	thickness ratio ^A	Solid or solid grouted				
Bearing walls		All other	9 (2.7) ^B	12 (3.7)	15 (4.5)	18 (5.5)
Solid units or solid grouted	20	Nonbearing walls		10		
All others	18 715	Exterior	9 (2.7)	12 (3.7)	15 (4.5)	18 (5.5)
Nonbearing walls		Interior	18 (5.5)	24 (7.3)	30 (9.1)	36 (11)
Exterior	18	Cantilever Walls ^C				
Interior	36	Solid	3 (0.9)	4 (1.2)	5 (1.5)	6 (1.8)
Cantilever walls ^B		Hollow	2 (0.6)	2.6 (0.8)	3.3 (1.0)	4 (1.2)
Solid	6	Parapets ^C	1.5 (0.5)	2 (0.6)	2.5 (0.8)	3 (0.9)
Hollow	4					
Parapets (8-in. (203-mm) thick min.)	в 3	^A Note that Ref. 6 inc with openings.	ludes moo	lified requ	irements f	or walls

University of Michigan, TCAUP

Structures II


Slide 27 of 28

Empirical Design Example Find allowable stress – table 4

Find load P = F Ag

Calculate per foot using gross Area

psi (Mpa)	psi (Mpa)				
Hollow Unit Masonry (Units					
C 90-06 or Later) (ref. 6) ^C :	Type M or S	Type N			
Hollow loadbearing CMU, $t \leq 8$	in mortar	mortar			
2,000 (14) or greater	140 (0.97)	120 (0.83)			
1,500 (10)	115 (0.79)	100 (0.69)			
(., 1,000 (6.9)	75 (0.52)	70 (0.48)			
700 (4.8)	60 (0.41)	55 (0.38)			
Hollow loadbearing CMU, 8 in.	< t < 12 in. (203	3 to 305 mm) ^D :			
2,000 (14) or greater	125 (0.86)	110 (0.76)			
1,500 (10)	105 (0.72)	90 (0.62)			
1,000 (6.9)	65 (0.49)	60 (0.41)			
700 (4.8)	55 (0.38)	50 (0.35)			
Hollow loadbearing CMU, $t \ge 1$	12 in (305 mm) ^D :			
2,000 (14) or greater	115 (0.79)	100 (0.69)			
1,500 (10)	95 (0.66)	85 (0.59)			
1,000 (6.9)	60 (0.41)	55 (0.38)			
700 (4.8)	50 (0.35)	45 (0.31)			
Hollow walls (noncomposite m	asonry bonded	l ^B):			
$t \le 8 \text{ in.} (203 \text{ mm})^{D}$	75 (0.52)	70 (0.48)			
8 < t < 12 in (203 to 305 mm	^D 70 (0.48)	65 (0.45)			
$t \ge 12 \text{ in } (305 \text{ m.m})^{\text{D}}$	60 (0.41)	55 (0.38)			

$$P = FA_{g} = 75(7.625 \times 12)$$
$$= 6862 \times 1$$

TRIBUTARY STRIP =
$$\frac{28'}{150}$$

P=6862 = $DL(28') + LL(28)$
= $150(28) + LL(28)$
LL = 95 PSF CAPACITY