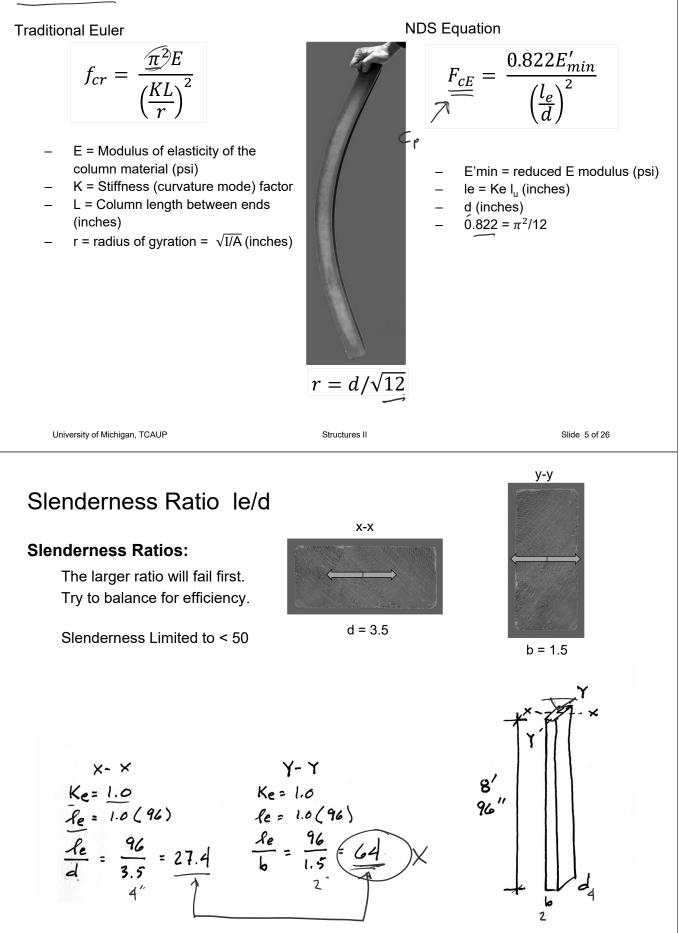


Failure Mode - Strength

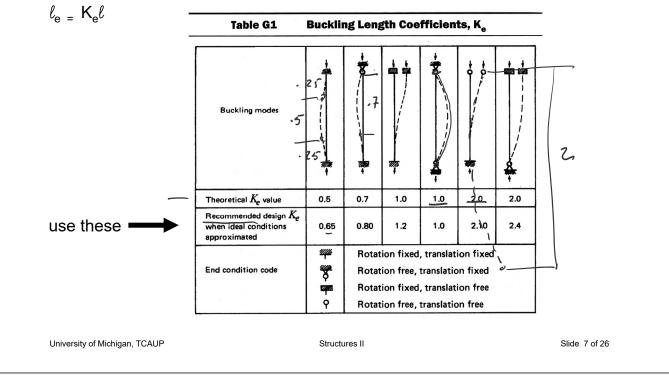
Short Columns – fail by crushing


Analysis \checkmark Design $\underbrace{f_c}_{P} = \frac{P}{A} \leq \underbrace{F'_c}_{C} \qquad \underbrace{f_c}_{P}(\underbrace{bvci(uvs)}_{A}) = \frac{P}{F'_c} \underbrace{f_c}_{P}(\underbrace$

- f_c = Actual compressive stress
- A = Cross-sectional area of column (in²)
- P = Load on the column
- F'_c = Allowable compressive stress per codes

Failure Modes – Stability

Long Columns - fail by buckling



Structures II

End Support Conditions, K_e

K_e is a constant based on the end conditions

- ℓ is the actual length
- $\ell_{\rm e}$ is the effective length (curved part)

Allowable Flexure Stress F_c'

Actual Flexure Stress f_b

 F_{c} from tables determined by species and grade

 $f_c = P/A$

 F_{c} ' = F_{c} (adjustment factors)

$$F_{c}' \geq f_{c}$$

Table 4A
(Cont.)Base Design Values for Visually Graded Dimension Lumber (2"-4" thick)^{1,2}
(All species except Southern Pine — see Table 4B) (Tabulated design values are for normal load
duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value
adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

			Desi	gn values in pour	nds per square inc	ch (psi)	COLUMNIS	
Species and commercial grade	Size classification	Bending ✓ F _b	Tension parallel to grain F _t	Shear parallei to grain F _v	Compression perpendicular to grain F _{c⊥}	Compression parallel to grain	Modulus of Elasticity E	Grading Rules Agency
EASTERN HEMLOCK-BA	LSAM FIR							
Select Structural		1250	575	140	335	1200	1,200,000	
No.1		775	350	140	335	1000	1,100,000	
No.2	2" & wider	575	275	140	335	825	1,100,000	
No.3		350	150	140	335	475	900,000	NELMA
Stud - Asther bet in the second	2" & wider	450	200	2 a 2 140 - 2 - 3	335	525	900,000	NSLB
Construction	·新福在住市 建常 经济 1 國家 前者 備備 偏常 金湯	675	300	140	335	1050	1,000,000	
Standard	2"-4" wide	375	175	140	335	850	900,000	
Utility		175	75	140	335	550	800,000	

Adjustment Factors

		ASD only				AS	SD and	d LRI	F D					LRFD only)
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	H Format Conversion Factor	- Resistance Factor	Time Effect Factor
$F_b = F_b$	x	CD	C _M	Ct	C_L	$C_{\rm F}$	C_{fu}	C _i	Cr	-	-	-	2.54	0.85	λ
$F_t = F_t$	x	CD	См	Ct	-	C _F	-	Ci	-	-	-	-	2.70	0.80	λ
$F_v' = F_v$	x	CD	См	Ct	-	-	-	Ci	-	-	-	-	2.88	0.75	λ
$F_c' = F_c$	x	CD	C _M	Ct	-	CF	-	Ci	-	Cp	-	-	2.40	0.90	λ
$\mathbf{F}_{\mathbf{c}\perp} = \mathbf{F}_{\mathbf{c}\perp}$	х	-	См	Ct	-	-	-	Ci	-	-	-	Cb	1.67	0.90	-
E _, = E	х	-	См	C_t	-	-	-	Ci	-	-	-	-	-	-	-
$E_{\min} = E_{\min}$	x	-	См	Ct	-	-	-	Ci	-	-	CT	-	1.76	0.85	-

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

University of Michigan, TCAUP

Structures II

Slide 9 of 26

Allowable Flexure Stress F_c'

 $\rm F_{c}$ from tables determined by species and grade

 $F_{c}^{\prime} = F_{c} (C_{D} C_{M} C_{t} C_{F} C_{i} C_{P})$

Adjustment factors for compression:

 C_D Load Duration Factor

Ct Temperature Factor

Table 2.3.2 Frequently Used LoadDuration Factors, C_p^1

Load Duration	C _D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

emperature Fa	ctor, Ct		
In-Service Moisture		Ct	
Conditions ¹	T≤100°F	100°F <t≤125°f< th=""><th>125°F<t≤150°f< th=""></t≤150°f<></th></t≤125°f<>	125°F <t≤150°f< th=""></t≤150°f<>
Wet or Dry	1.0	0.9	0.9
Dry	1.0	0.8	0.7
Wet	1.0	0.7 .	0.5
	In-Service Moisture - Conditions ¹ Wet or Dry Dry	Moisture Conditions ¹ T≤100°F Wet or Dry 1.0 Dry 1.0	In-Service Moisture Conditions ¹ Ct T≤100°F 100°F <t≤125°f< th=""> Wet or Dry 1.0 0.9 Dry 1.0 0.8</t≤125°f<>

 Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.

(1) Actual stress due	
to (DL)	\leq (0.9) (Design value)
(2) Actual stress due	-
to (DL+LL)	\leq (1.0) (Design value)
(3) Actual stress due	
to (DL+WL)	\leq (1.6) (Design value)
(4) Actual stress due	
to $(DL+LL+SL)$	\leq (1.15) (Design value)
(5) Actual stress due	
to (DL+LL+WL)	\leq (1.6) (Design value)
(6) Actual stress due	
to (DL+SL+WL)	\leq (1.6) (Design value)
(7) Actual stress due	
to (DL+LL+SL+WL)	\leq (1.6) (Design value)

Allowable Flexure Stress F_c' (For Dimensioned Lumber)

F_c from tables determined by species and grade

$$F_{c}' = F_{c} \left(C_{D} C_{M} C_{t} C_{F} C_{i} C_{P} \right)$$

Wet Service Factor, CM

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

$F_{c} \left(C_{D} C_{\underline{M}} C_{t} C_{F} C_{i} C_{P} \right) $			Wet Service Factors, C _M					
	(- P)		F_{b}	F_t	F_v	$F_{c\perp}$	F _c	E and H
ment factors for compression: C _M Moisture Factor			0.85*	1.0	0.97	0.67	0.8**	0.9
					50 psi, $C_M = 1$.		Ť	
C _F Size Factor			** when (F_c)	$(C_F) \leq 7$	50 psi, $C_M = 1.0$			
		Size Factors	, C _F			_	_	r
		1	F _b		Ft		F	c
		Thickness	s (breadth)					
Grades	Width (depth)	2" & 3"	4"	-			1	
	2", 3", & 4"	1.5	1.5		1.5		1.	15
Select	5"	1.4	1.4		1.4		1.	1
Structural,	6"	1.3	1.3		1.3		1.	1
No.1 & Btr,	8"	1.2	1.3		1.2		1.	05
No.1, No.2,	10"	1.1	1.2		1.1		1.	0
No.3	12"	1.0	1.1		1.0		1.	0
	14" & wider	0.9	1.0		0.9		0.	9
	2", 3", & 4"	1.1	1.1		1.1		1.	05
Stud	5" & 6"	1.0	1.0		1.0		1.	0
	8" & wider	Use No.3 Grad	e tabulated o	lesign v	alues and si	ze fac ors	3	
Construction, Standard	2", 3", & 4"	1.0	1.0		1.0		1.	0
Utility	4"	1.0	1.0		1.0		1.	0
	2" & 3"	0.4			0.4		0.	-

Allowable Flexure Stress F_c' (For Timbers)

F_c from tables determined by species and grade

 F_{c} = F_{c} (C_{D} C_{M} C_{t} C_{F} C_{i} C_{P})

Adjustment factors for compression:

C_M Moisture Factor

C_F Size Factor

Size Factor, CF

When visually graded timbers are subjected to loads applied to the narrow face, tabulated design values shall be multiplied by the following size factors:

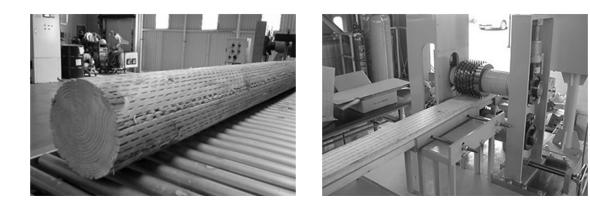
	Size Factors, C _F							
Depth	Fb	F,	Fe					
d > 12" $d \le 12"$	$(12/d)^{1/9}$	1.0	1.0					
$d \le 12"$	1.0	1.0	1.0					

Wet Service Factor, C_M

When timbers are used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table (for Southern Pine and Mixed Southern Pine, use tabulated design values without further adjustment):

	We	t Service	Factors	S, C_M
F_{b}	Ft	$F_{\rm v}$	$F_{c\perp}$	$F_c = E \text{ and } E_{min}$
1.00	1.00	1.00	0.67	0.91 1.00

Allowable Flexure Stress F_c'


 $\rm F_{c}$ from tables determined by species and grade

$$F_{c}^{\prime} = F_{c} (C_{D} C_{M} C_{t} C_{F} C_{i} C_{P})$$

 $\begin{array}{l} \mbox{Adjustment factors for compression}:\\ \mbox{C}_i \ \mbox{Incising Factor} \end{array}$

Table 4.3.8 Incising Factors, C,

Design Value	Ci	
E, E _{min}	0.95	
F_b, F_t, F_c, F_v	0.80	
F _c	1.00	

University of Michigan, TCAUP

Structures II

Slide 13 of 26

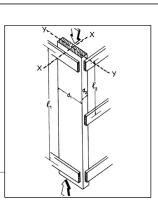
Allowable Compression Stress F_c'

F_c from tables determined by species and grade

$$F_{c}$$
' = F_{c} (C_{D} C_{M} C_{t} C_{F} C_{i} C_{P})

3.7 Solid Columns

3.7.1 Column Stability Factor, C_P

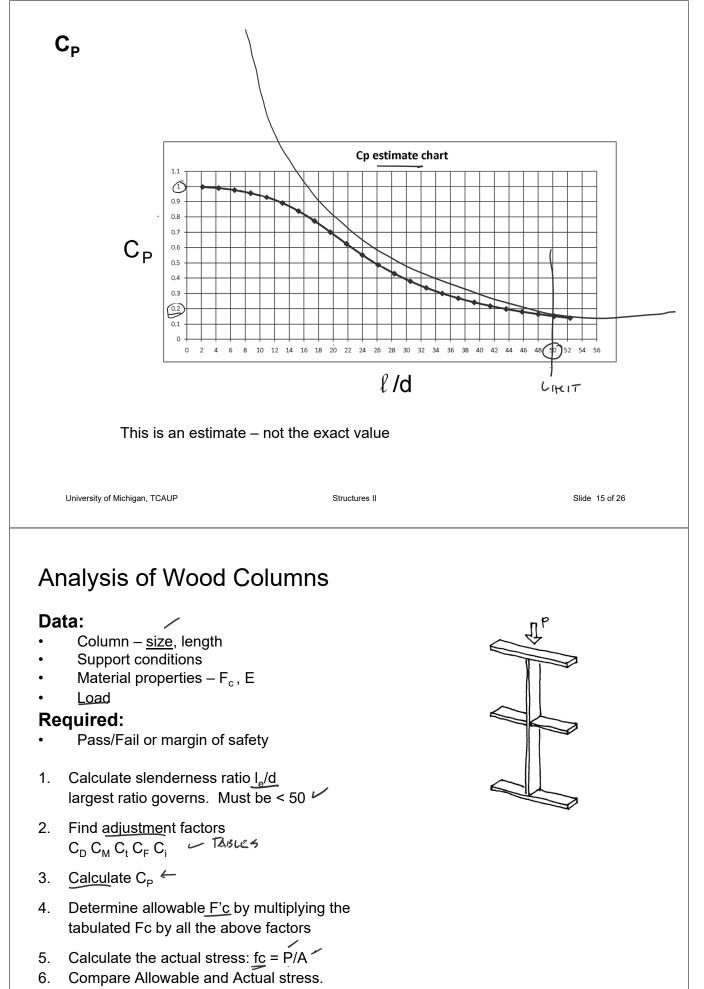

3.7.1.1 When a compression member is supported throughout its length to prevent lateral displacement in all directions, $C_P = 1.0$.

3.7.1.2 The effective column length, ℓ_e , for a solid column shall be determined in accordance with principles of engineering mechanics. One method for determining effective column length, when end-fixity conditions are known, is to multiply actual column length by the appropriate effective length factor specified in Appendix G, $\ell_e = (K_e)(\ell)$.

3.7.1.3 For solid columns with rectangular cross section, the slenderness ratio, ℓ_e/d , shall be taken as the larger of the ratios ℓ_{e1}/d_1 or ℓ_{e2}/d_2 (see Figure 3F) where each ratio has been adjusted by the appropriate buck-ling length coefficient, K_e, from Appendix G.

3.7.1.4 The slenderness ratio for solid columns, ℓ_o/d , shall not exceed 50, except that during construction ℓ_o/d shall not exceed 75.

3.7.1.5 The column stability factor shall be calculated as follows:

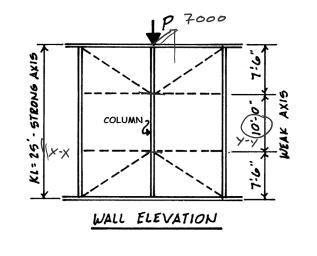

$$C_{p} = \frac{1 + \left(F_{cE}, \overline{F_{c}^{*}}\right)}{2c} - \sqrt{\left[\frac{1 + \left(F_{cE}, \overline{F_{c}^{*}}\right)}{2\underline{c}}\right]^{2} - \frac{F_{cP}/F_{c}^{*}}{c}}{c} \quad (3.7-1)$$

where:

 F_c = reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_p (see 2.3), psi

$$EULCR (F_{cE}) = \frac{0.822 E_{min}}{(\ell_e / d)^2}$$

- c = 0.8 for sawn lumber
- c = 0.85 for round timber poles and piles
- c = 0.9 for structural glued laminated timber or structural composite lumber


Analysis Example: Pass/Fail

Data: section <u>4x8</u> (nominal) Douglas <u>Fir-Larch</u> <u>No1</u> M.C. 15% -P = 7000 LBS (Snow Load)

Find: Pass/Fail

From NDS Supplement Table 4A

<u>Fc</u> = 1500 psi

in = 620000 psi	Species and commercial grade	Size classification	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticit
= 1.15 (snow)			$F_{c\perp}$	(F _c)	Е	E _{min}
.0	DOUGLAS FIR-LARCH					
	Select Structural		625	1,700	1,900,000	690,000
)	No. 1 & Btr		625	. 1.550	1.800.000	660.000
5 (4x8)	No. 1	2" & wider	625	1,500	1,700,000	620,000
	No. 2		625	1,350	1,600,000	580,000
	No. 3		625	775	1,400,000	510,000
	Stud	2" & wider	625	850	1,400,000	510,000
	Construction		625	1,650	1,500,000	550,000
	Standard	2" - 4" wide	625	1,400	1,400,000	510,000
	Utility		625	900	1,300,000	470.000

University of Michigan, TCAUP

Arch 544

Slide 17 of 26

Analysis Example: Pass/Fail

Determine Allowable Flexure Stress F_c'

Fc = 1500 psi

$$\mathsf{F}_{c}' = \mathsf{F}_{c} \left(\mathsf{C}_{\mathsf{D}} \, \mathsf{C}_{\mathsf{M}} \, \mathsf{C}_{\mathsf{t}} \, \mathsf{C}_{\mathsf{F}} \, \mathsf{C}_{\mathsf{i}} \, \mathsf{C}_{\mathsf{P}} \right)$$

Adjustment factors for compression: C_M Moisture Factor = 1.0 (dry) C_F Size Factor = 1.05

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_M

 F_b F_t F_v $F_{c\perp}$ F_c $E \text{ and } E_{mi}$

 0.85*
 1.0
 0.97
 0.67
 0.8**
 0.9

* when $(F_b)(C_F) \le 1,150 \text{ psi}, C_M = 1.0$

** when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$

		Size Factors,	C _F		
		F	b	Ft	F _c
		Thickness	(breadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	, 1.1
No.1 & Btr,	(8)	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated design	values and size fac	ors
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4	_	0.4	0.6

Analysis Example: Pass/Fail

Calculate C_P

$$C_{P} = \frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}} \quad (3.7-1)$$

where:

 F_c = reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_p (see 2.3), psi

$$F_{cE} = \frac{0.822 E_{min}}{(\ell_e/d)^3}$$

c = 0.8 for sawn lumber

- c = 0.85 for round timber poles and piles
- c = 0.9 for structural glued laminated timber or structural composite lumber

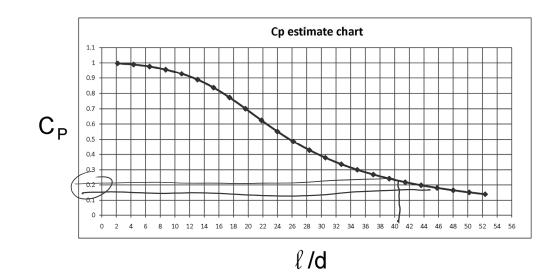
University of Michigan, TCAUP

Structures II

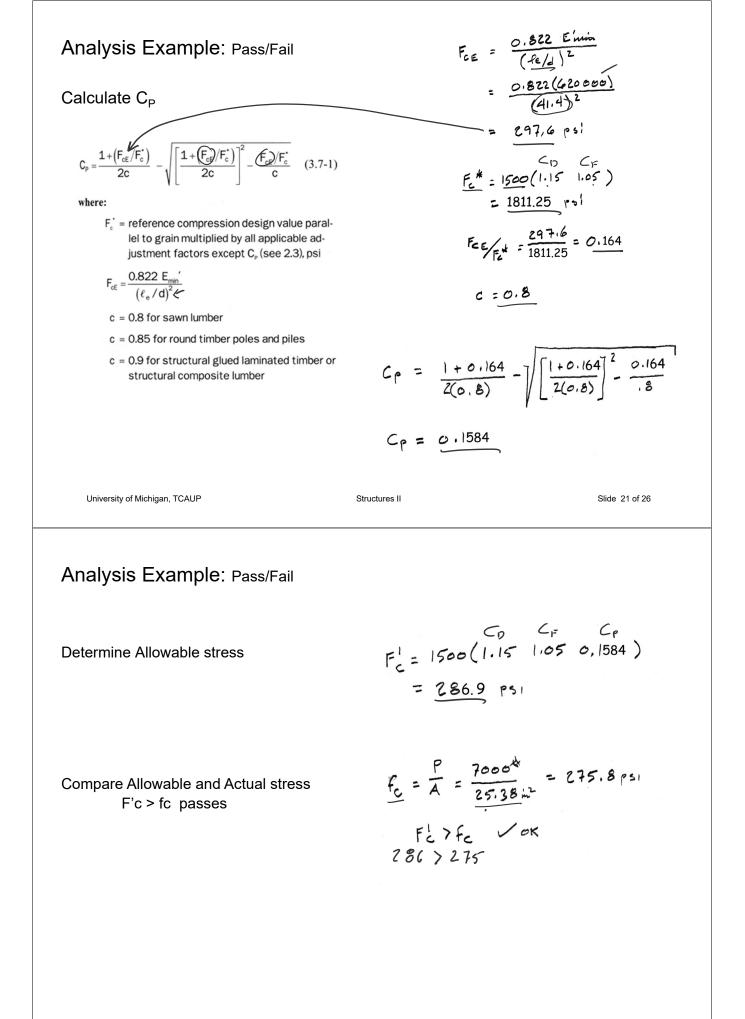
KI= 25' - STRONG AXIS

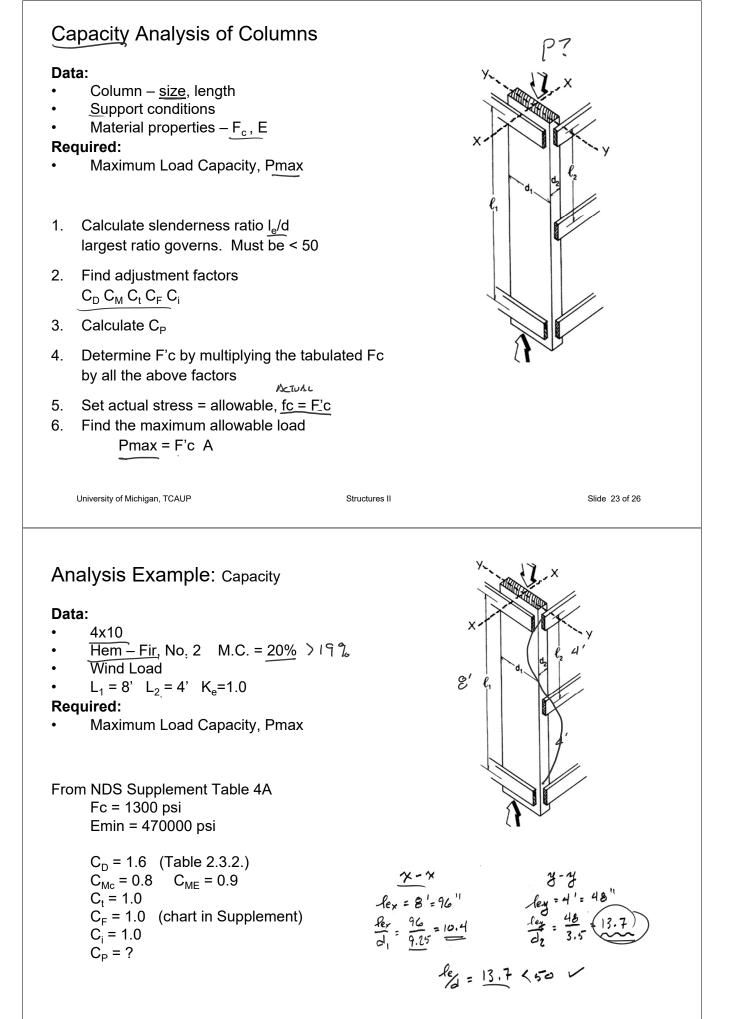
4x8

COLUMN


3.5"x7.25"

WALL ELEVATION


Slide 19 of 26


WEAK AXIS

CP

This is an estimate - not the exact value

Allowable Flexure Stress F_c'

4 x 10 M.C. = 20%

 $\rm F_{c}$ from tables determined by species and grade

 $F_{c}^{'} = F_{c} (C_{D} C_{M} C_{t} C_{F} C_{i} C_{P})$

Adjustment factors for compression: C_M Moisture Factor $C_{Mc} = 0.8$ $C_{ME} = 0.9$

 $C_{\rm F}$ Size Factor = 1.0

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed <u>19%</u> for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet	Service	Factors,	См
-----	---------	----------	----

F_{b}	F_t	$F_{\rm v}$	$F_{c\perp}$	Fc	$E \mbox{ and } E_{\mbox{\scriptsize min}}$
0.85*	1.0	0.97	0.67	0.8**	0.9
* when $(F_b)(C_F) \le 1,150 \text{ psi}, C_M = 1.0$					
** when (Fc)	$(C_F) \le 750$				

Size Factors, C_F F_b Ft F_c Thickness (breadth) 2" & 3" Grades Width (depth) 4" 2", 3", & 4" 1.5 1.5 1.5 1.15 Select 1.4 1.4 5" 1.4 1.1 6" Structural, 1.3 1.3 1.3 1.1 8" No.1 & Btr, 1.2 1.3 1.2 1.05 No.1, No.2, 10" 1.1 1.2 1.1 1.0 No.3 12" 1.0 1.0 1.1 1.0 14" & wider 0.9 1.0 0.9 0.9 2", 3", & 4" 1.1 1.1 1.1 1.05 5" & 6" 1.0 1.0 1.0 1.0 Stud 8" & wider Use No.3 Grade tabulated design values and size fac ors 2", 3", & 4" 1.0 Construction, 1.0 1.0 1.0 Standard 4" 1.0 1.0 Utility 1.0 1.0 2" & 3" 0.4 0.4 0.6

University of Michigan, TCAUP

Structures II

Slide 25 of 26

Capacity Example

Find C_P

$$F_{CE} = \frac{0.822 \text{ E'mm}}{(\frac{R_{e}}{d})^{2}}$$

$$= \frac{0.822(470000 (0.9))}{[13.7^{2}]}$$

$$= [848.7 \text{ ps}]$$

$$F_{ee}/F_{e}^{*} = \frac{1848.7}{1664} = 1.111$$

 $C_{ee} = 0.7261$

$$C_{p} = \frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}$$
(3.7-1)

where:

F_c = reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_o (see 2.3), psi

$$F_{cE} = \frac{0.822 E_{min}}{(\ell_e / d)^2}$$

c = 0.8 for sawn lumber

- c = 0.85 for round timber poles and piles
- c = 0.9 for structural glued laminated timber or structural composite lumber

Find the maximum load, Pmax

$$F_{c}^{\prime} = 1300 (1.6 \ 0.8 \ 0.7261)$$

 $= 1208 \ psi$
 $F_{max} = F_{c}^{\prime} A = 1208(32.38) = 39.115^{++}$

University of Michigan, TCAUP