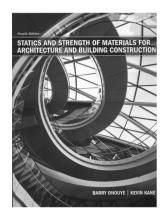
ARCHITECTURE 324 STRUCTURES II

Course Introduction:


Course Syllabus **Course Format** Online Resources

Teaching Staff:

Dr.-Ing. Peter von Bülow pvbuelow@umich.edu

GSI's:

002	Faezeh Choobkar	faezehch@umich.edu
003	Faezeh Choobkar	faezehch@umich.edu
004	Alireza Fazel	arfazel@umich.edu
005	Alireza Fazel	arfazel@umich.edu
006	Mohsen Vatandoost	mohsenv@umich.edu

University of Michigan, Taubman College Structures II Slide 1 of 13

Course Syllabus

Organization

- Lecture Monday & Wednesday
- Recitation Friday
- HW Problems on web
- · Topic Quiz weekly

Evaluation

•	24 Lecture Quizzes	240
•	12 Topic Quizzes	240
•	11 HW Problems	790
•	Tower Project	250
•	9 Recitation Labs	180

Text

- Structures by Schodek
- Statics and Strength of Materials by Onouye
- · Code material on Canvas
- Web site

https://structures.tcaup.umich.edu/

Architecture 324 3 credit hours

http://www.structures.tcaup.umich.edu/

ARCHITECTURAL STRUCTURES II

Prof. Peter von Buelow

Section 001 9:30-10:30 MW Recitation Sections F
Section 002 9:30-10:30
Section 003 10:30-11:30
Section 004 9:30-10:30
Section 005 10:30-11:30
Section 006 9:30-10:30

CATALOG DESCRIPTION

This course covers the basic principles of elastic behavior for different materials such as wood, steel, concrete and composite materials, and compares the properties and applications of materials generally. It investigates cross sectional stress and strain behavior in flexure and in shear, and torsion as well as the stability of beams and columns. The qualitative behavior of combined stresses and fracture in materials is also covered. Prerequisite: ARCH 314

OBJECTIVES

Students are introduced to the fundamentals of analysis and design of simple structural members in wood, steel, concrete and masony. Basic code requirements of strength, stability and serviceability are discussed. Both vertical and lateral loads based on ASCET are considered, Principles of composite materials design, and structural continuity are covered.

ORGANIZATION

ORGANIZATION
The course is comprised of lectures (Monday & Wednesday) and a recitation (Friday). The lectures will be posted on the course website and may be watched asynchronously if you cannot attend in person. Lecture attendance is not required, nowever there is a quiz with each lecture. The lectures cover structural concepts and procedures of design using the primary building materials of wood, steel, concrete and masonry. Each Friday the class is broken into smaller recitation sections in which the GSIs review analysis procedures of the various structural elements discussed in the lectures. Recitations may also include an in-class lab assignment. Solutions to homework problems are entered online through the course website. Topics are summarized weekly through Canvas Topic Outzes. In addition, a construction/testing project gives students an opportunity to apply concepts to a physical design. Computer facilities, including software, are available on machines in the building, for supporting computations.

EVALUATION

Evaluation is based on an accumulated total number of points. Points are earned based on performance in all course activities – 24 lecture quizzes, 12 Canvas topic quizzes, 11 homework problems, 9 recitation labs, and the tower project. Grades are assigned according to the number of points achieved during the semester:

nea according to the hamber of points a	0111010
24 lecture quizzes 10 pts each	240
12 topic quizzes 20 pts each	240
11 homework problems, 5pts/ question	790
tower testing project	250
9 recitation labs, 20 pts each	180
TOTAL	1700

The point scale relates to a full range of letter grades assigned as follows:

				9	
A+	1643	Α	1587	A-	1530
B+	1473	В	1417	B-	1360
C+	1303	C	1247	C-	1190
D+	1133	D	1077	D-	1020
		_	1010	al bala	

By University policy the minimum passing grade is a D (1077). The highest recorded grade in Architecture is an A. For graduate students C- (1190) is required to pass.

Course Schedule

Lectures

Monday & Wednesday video recorded and posted

Recitation

Friday with GSI

online signup – see emailed link

Homework

On course website "Problems"

Quizzes

Lecture Quizzes – in class or in Canvas video Canvas (weekly Topic Quiz)

Project

tower

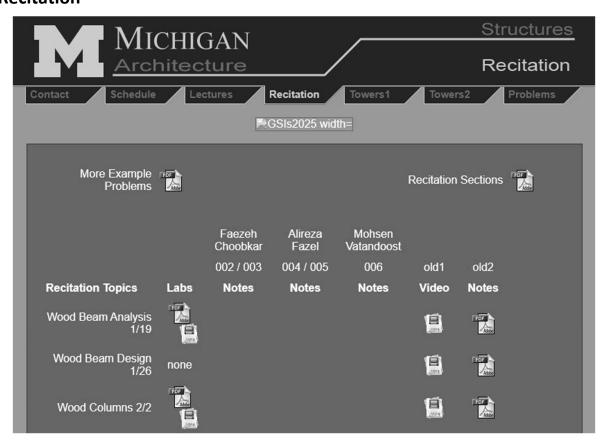
weight and load

DATE	TOPIC	Text Reading	PROBLEMS (due dates online)
JAN 8	Course Intro	Onouye, Schodek	
JAN 13 JAN 15 JAN 17	1 - Wood Properties 2 - Wood Beam Analysis Recitation [1-Wood Beams]	NDS Schodek 6.4.2 Topic Quiz 1	Wood Beam Analysis
JAN 20	Martin Luther King Day **** No		
JAN 22 JAN 24	3 - Wood Beam Design Recitation	Onouye 8	
1441.07		Topic Quiz 2	2. Wood Beam Design
JAN 27 JAN 29 JAN 31	4 - Wood Column Analysis 5 - Wood Column Design Recitation [2-Wood Columns]	Onouye 9.1-9.2 & 9.4, Scho NDS	Tower Intro
FFB 3		Topic Quiz 3	Wood Column Analysis
FEB 5 FEB 7	6 - Cross Laminated Timbers 7 - Steel Properties Recitation – Tower Project	CLT Handbook AISC, Onouye 8.7 Topic Quiz 4	
FEB 10	8 - Steel Beam Analysis	Schodek 6.4.3	
FEB 12	9 - Steel Beam Analysis	Schodek 6.4.3	
FEB 14	Recitation [3-Steel Beams]		Prelim. Tower Report Due
FFB 17	40 Steel Beem Design	Topic Quiz 5	4 Steel Beam Analysis
FEB 17 FEB 19 FEB 21	10 - Steel Beam Design 11 - Steel Column Analysis Recitation [4-Steel Columns]	Schodek 6.4.3 Onouye 9.3, Schodek 7.4.4	
		Topic Quiz 6	Steel Beam Design
FEB 24 FEB 26 FEB 28	12 - Steel Column Design "Skyscrapers" David Macaulay Recitation	Onouye 9.3, Schodek 7.4.4 video	Steel Column Analysis
MAR 3 MAR 5 MAR 7	WINTER RECESS **** NO CLA WINTER RECESS **** NO CLA WINTER RECESS **** NO CLA	ASS **** WINTER RECESS *	*** NO CLASS **** *** NO CLASS ****
MAR 10 MAR 12 MAR 14	13 - Continuous Beams 14 - Gerber Beams Recitation [5-Continuous Beams	I. Engel Ch. 17, Schodek 8 Schodek 8.4.4 s] Topic Quiz 7	7. Three Moment Theorem
MAR 17 MAR 19 MAR 21	15 - Intro to Concrete – PCA vid 16 - Concrete Beams Recitation [6-Stress vs Strain]		7. Three Mornerit Theorem
MAR 24	Tower Testing **** Tower Testing		ver Testing ****
MAR 26 MAR 28	17 - Concrete Beams Recitation	I. Engel Ch.15	
MAD 04	40. O	Topic Quiz 9	Concrete Beam Analysis
MAR 31 APR 2 APR 4	18 - Concrete Beam Design 19 - Concrete Columns Recitation [7-Concrete Reinfor	Schodek 7.4.5 rcing] Topic Quiz 10	Concrete Beam Design
APR 7	20 - Composite Sections	Topio Quiz 10	o. Condicte Death Design
APR 9 APR 11	21 - Composite Sections Recitation [8-Composite Section	ns] Topic Quiz 11	10. Composite Sections
APR 14	22 - Masonry Intro.	TMS 402	To, Composite Sections
APR 16 APR 18	23 - Masonry Walls Recitation [9-Lateral Stability]	TMS 402	Final Tower Report Due
		Topic Quiz 12	11. Masonry Walls
APR 21	24 - Masonry Walls	TMS 402	

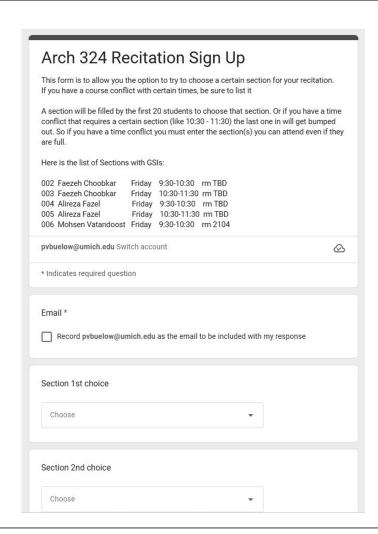
University of Michigan, Taubman College Structures II Slide 3 of 13

Course Web Site

http://www.structures.tcaup.umich.edu/



Lectures



University of Michigan, Taubman College Structures II Slide 5 of 13

Recitation

Recitation Sign Up

University of Michigan, Taubman College

Slide 7 of 11

Tower Test

Tower Test

University of Michigan, Taubman College Structures II Slide 9 of 13

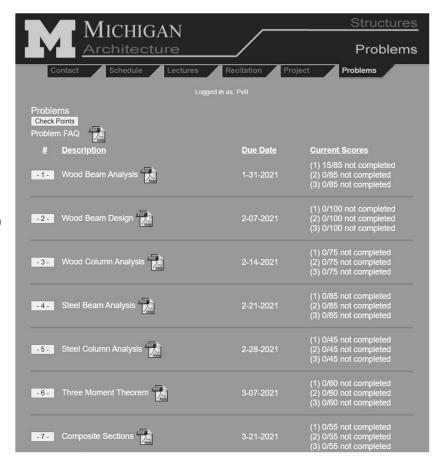
Computer Problems

Uniqname

UM ID Number

Computer Problems

Problem Menu


Check Grades

Problem FAQ

Select Problem

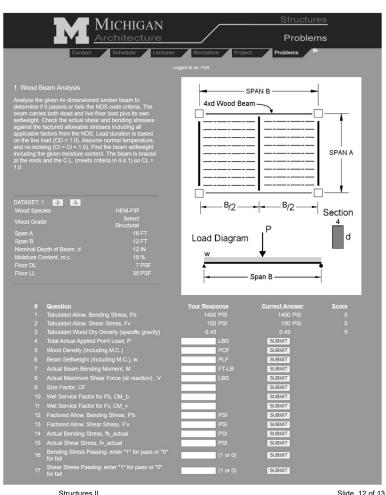
Download Instructions

Work Problem (best of 3 versions)

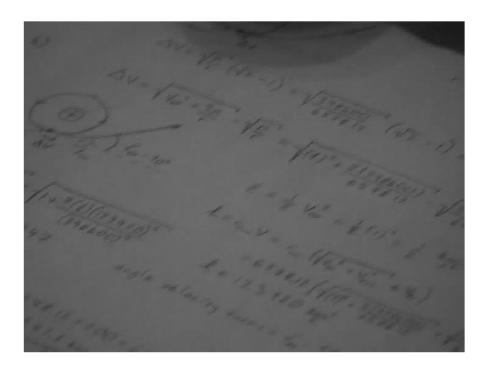
Structures II University of Michigan, Taubman College Slide 11 of 13

Computer Problems

Problem Page


Choose Data Set

Enter Answers


Submit

Read Score

Correct if Necessary

Tips on how engineering students study for exams

University of Michigan, Taubman College