Architecture 324 Structures II

Steel Column Analysis

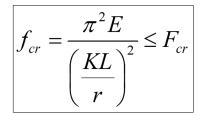
- · Failure Modes
- · Effects of Slenderness
- Stress Analysis of Steel Columns

University of Michigan, TCAUP

Structures II

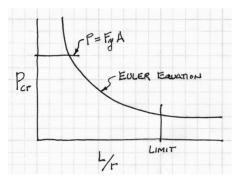
Slide 1 of 20

Leonhard Euler (1707 - 1783)

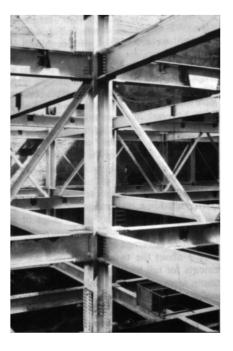

Euler Buckling (elastic buckling)

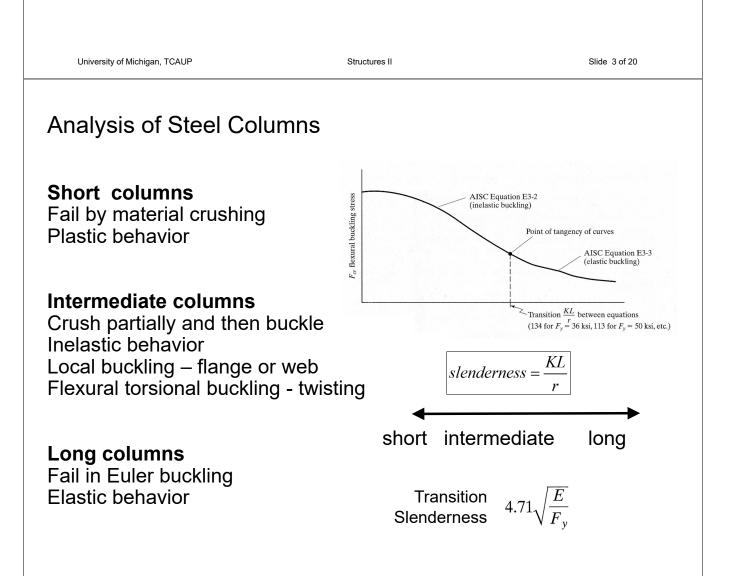
$$P_{cr} = \frac{\pi^2 AE}{\left(\frac{KL}{r}\right)^2} = \frac{\pi^2 IE}{(KL)^2}$$

$$r = \sqrt{\frac{I}{A}}$$


$$I = Ar^2$$

- A = Cross sectional area (in²)
- E = Modulus of elasticity of the material (lb/in²)
- K = Stiffness (curvature mode) factor
- L = Column length between pinned ends (in.)
- r = radius of gyration (in.)


portrait by Emanuel Handmann,1753

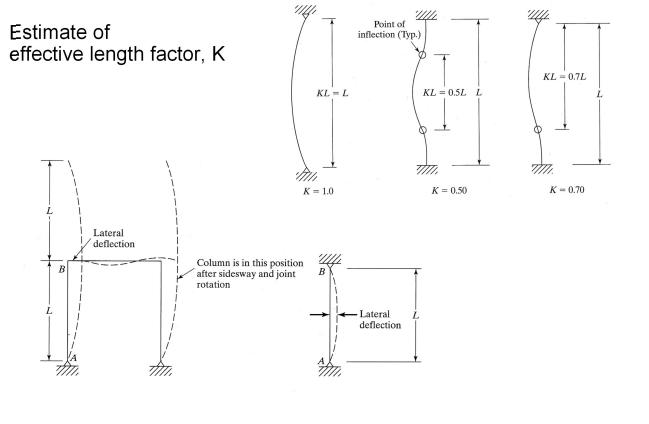


Analysis of Steel Columns

Conditions of an Ideal Column

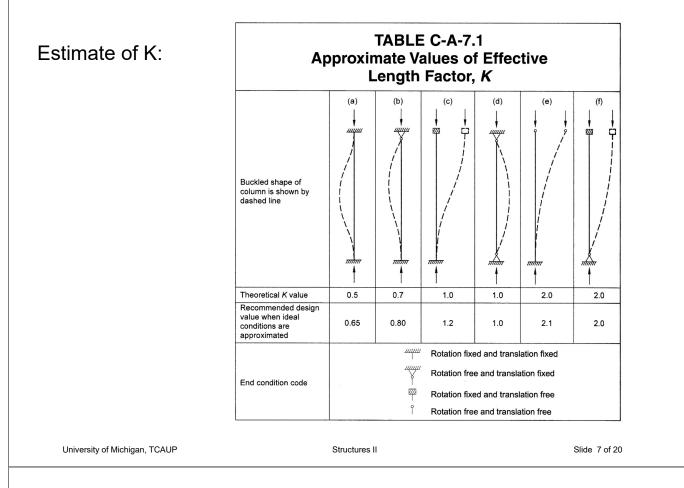
- initially straight
- axially loaded
- uniform stress (no residual stress)
- uniform material (no holes)
- no transverse load
- pinned (or defined) end conditions




Failure Modes

Column 1: Strong axis flexural buckling Column 2: Web local buckling Column 3: Weak axis flexural buckling Column 4: Torsional buckling Column 5: Flange local buckling

"Dancing Columns" Sherif El-Tawil



Analysis of Steel Columns

University of Michigan, TCAUP

Analysis of Steel Columns

Determining K factors by Alignment Charts

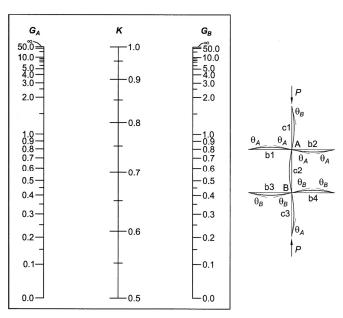
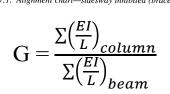
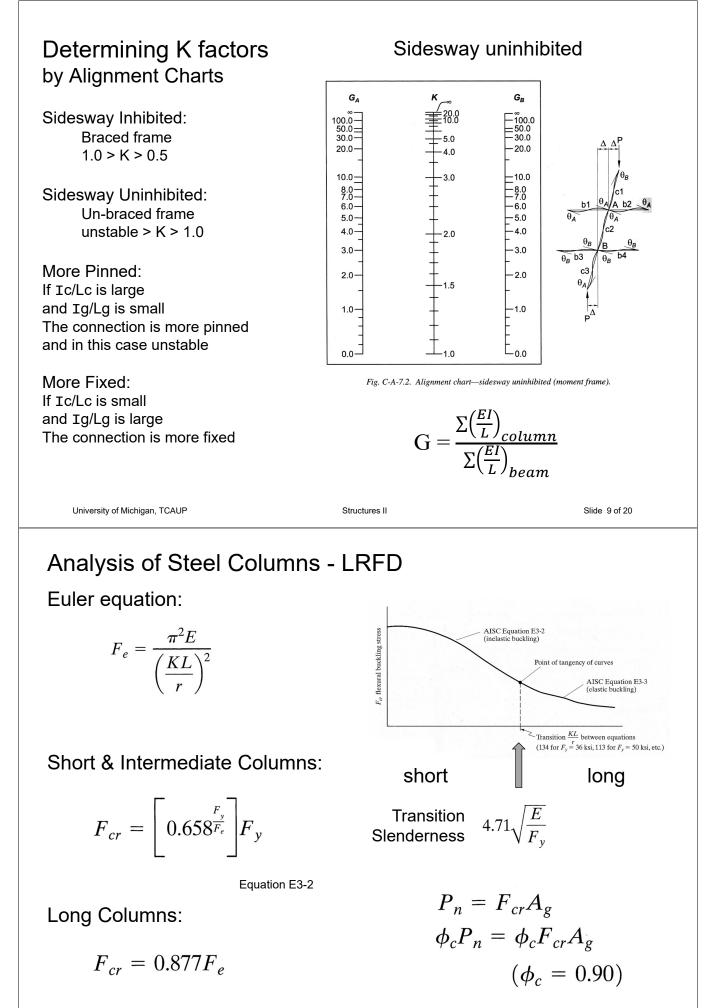
Sidesway Inhibited: Braced frame 1.0 > K > 0.5

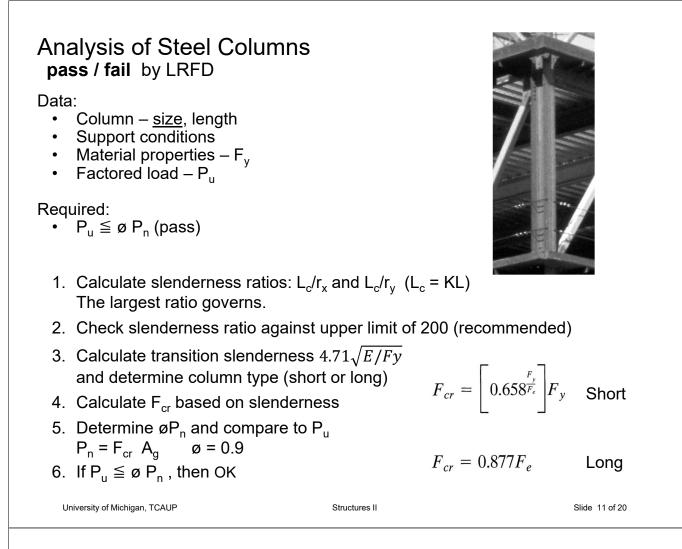
Sidesway Uninhibited: Un-braced frame unstable > K > 1.0

More Pinned: If Ic/Lc is large and Ig/Lg is small The connection is more pinned

More Fixed: If Ic/Lc is small and Ig/Lg is large The connection is more fixed

Sidesway inhibited

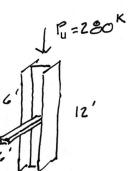





Fig. C-A-7.1. Alignment chart—sidesway inhibited (braced frame).

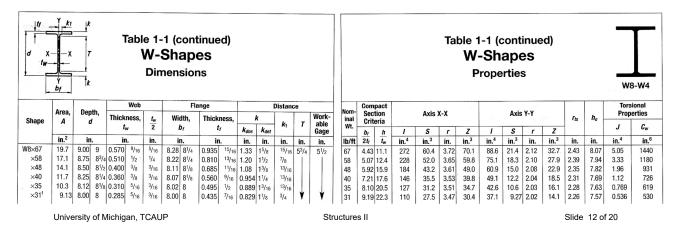
Equation E3-3

Structures II

Example - Analysis of Steel Columns pass / fail by ASD


Data:

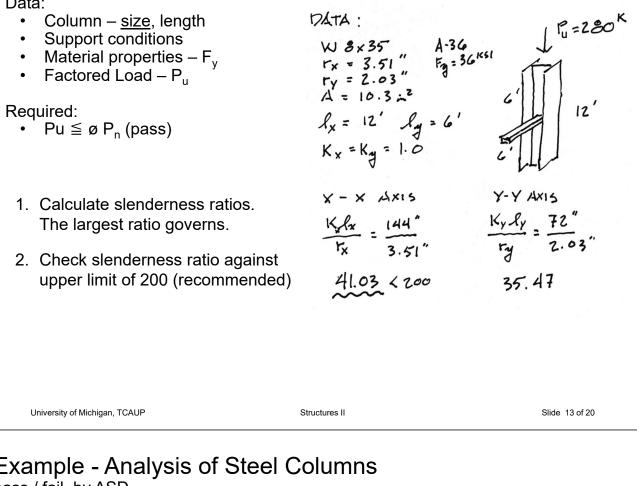
- Column <u>size</u>, length
- Support conditions
- Material properties F_y
- Factored Load P_u


Required:

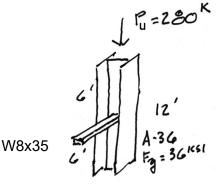
• $P_u \leq ø P_n$ (pass)

W $8 \times 35^{\circ}$ A-36 $r_{x} = 3.51^{\circ}$ $F_{g} = 36^{\kappa s1}$ $r_{y} = 2.03^{\circ}$ $A = 10.3 in^{2}$ G' $l_{x} = 12^{\circ}$ $l_{x} = 6^{\circ}$ $K_{x} = K_{a} = 1.0$ G'

1. Calculate slenderness ratios: L_c/r_x and L_c/r_y ($L_c = KL$) The largest ratio governs.



DATA :


Example - Analysis of Steel Columns

pass / fail by ASD

Data:

Example - Analysis of Steel Columns pass / fail by ASD

- 3. Calculate transition slenderness $4.71\sqrt{E/Fy}$ and determine column type (short or long)
- 4. Calculate F_{cr} based on slenderness
- 6. If $P_{\mu} \leq ø P_{n}$, then OK

 $4.71\sqrt{\frac{E}{F_{2}}} = 4.71\sqrt{\frac{29000}{36}} = 134$ 41 < 134 :. SHORT

Euler Equation

$$F_{e} = \frac{\pi^{2} E}{\left(\frac{KL}{F}\right)^{2}} = \frac{\pi^{2} 29000^{KSI}}{4I^{2}} = 170.2 \text{ KsI}$$

Short Column Equation

$$F_{zr} = \begin{bmatrix} 558 & F_{z} \\ -568 & F_{z} \end{bmatrix} F_{y} = 0.9153(36) = 32.95 \text{ ksi}$$

Column Strength

$$F_{h} = E_{r} A_{g} = 32.95 \text{ Ksi} \times 10.3 \text{ m}^{2} = 33.9.39 \text{ K}$$

$$\phi_{h} = 0.9 \text{ f}_{h} = 0.9 (339.39) = 305.4 \text{ K}$$

$$P_{v} = 280^{K} < 305.4^{K} = \phi_{h} \qquad 6K$$

Analysis of Steel Columns capacity by LRFD

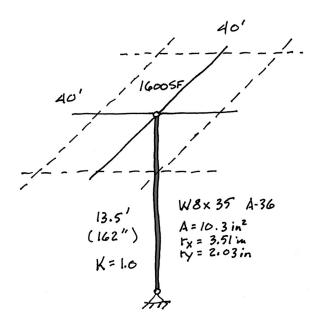
Data:

- Column <u>size</u>, length
- Support conditions ٠
- Material properties $-F_{v}$

Required:

- Max load capacity
- 1. Calculate slenderness ratios. The largest ratio governs.
- 2. Check slenderness ratio against upper limit of 200 (recommended)
- 3. Calculate transition slenderness $4.71\sqrt{E/Fy}$ and $F_{cr} = \begin{bmatrix} 0.658^{\frac{F_y}{F_c}} \end{bmatrix} F_y$ Short determine column type (short or long)
- 4. Calculate F_{cr} based on slenderness
- 5. Determine øPn and Compute allowable capacity: $P_n = F_{cr} A_a$ $P_u = \emptyset P_n$

$$F_{cr} = 0.877F_e$$
 Long


University of Michigan, TCAUP

Structures II

Slide 15 of 20

Capacity Example 1

Free standing column Third floor studio space Supports roof load = 20 psf DL + SL snow \approx 15lbs / FT depth

Capacity Example 1

- 1. Calculate slenderness ratios. The largest ratio governs.
- Check slenderness ratio against upper limit of 200 (recommended)
- 3. Calculate transition slenderness $4.71\sqrt{E/Fy}$ and determine column type (short or long)
- 4. Calculate F_{cr} based on slenderness

$$\frac{X_{g} - X_{g}}{K_{g} - X_{g}} = \frac{1(162^{*})}{2.03^{''}} = 79.8 < 200$$

$$4.717 = 4.717 = 36 = 134$$

79.8 < 134 : SHORT

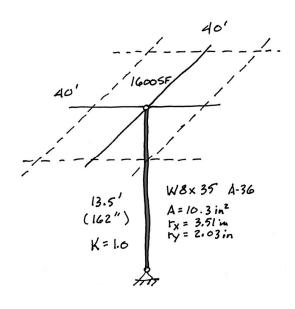
Euler Buckling

$$F_{e} = \frac{\pi^{2} E}{\left(\frac{K_{y}}{F}\right)^{2}} = \frac{\pi^{2} 29000}{79.8^{2}} = 44.94 \text{ ksi}$$

Short Column Equation

$$F_{er} = \left[0.658^{\frac{F_{e}}{F_{e}}}\right] F_{y} = \left[0.7151\right] 36 = 25.74 \text{ ks}$$

University of Michigan, TCAUP


Structures II

Slide 17 of 20

Capacity Example 1

DL = 20 psf

20 psf (1600 sf) = 32k on column

Column nominal strength

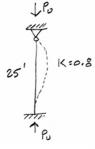
$$P_{h} = F_{cr} A_{g} = 25.74 \text{ Kol} \ 10.3 \text{ m}^{2} = 265.1^{k}$$

 $\Phi P_{H} = 0.9(265) = 238.6^{k} = P_{0}$

Load capacity

$$P_{U} = 1.2(32) + 1.4(5L) = 238.4^{k}$$

SL = 125.1 ^k


For AT = 40×40 = 1600 SF

$$SL = \frac{125100}{1600SF}^{*} = 78.2 \text{ PSF}$$

78.2 lbs / 15 lbs/ft = 5.21 ft

Capacity Example 2 long column – using equations

	long column – using equations							51				↓ ~~~~	2	
Find the ca 25 ft. colum	• •		r _x = 3.51 in. r _y = 2.03 in.					о KSI (но BRD	ciucs)		25	-'	K=0	
Table G1	Buckling L	ength Coe	- Slenderness y-y											
Buckling modes			-	+0	+ + **********************************	4. Euler	刊 E Buck	= 113 ling	<118.2 < 118.2 ² 2900 118.2 ²		Lонс 20,47	' f	20	
Theoretical K_e value	0.5 0.	.7 1.0	1.0	2.0	2.0		(
Recommended design K_e when ideal conditions approximated	2.4	Long Column Equation Fer = 0,877 (20.47) = 17,95 KS1												
End condition code End condition code Rotation fixed, translation fixed Rotation fixed, translation fixed Rotation fixed, translation free Rotation free, translation free						Column strength $\phi P_n = \phi F_{cr} A_g = 0.9 (17,95) (10.3) = 166.4$								
	an, TCAUP											:	of 20	
Canacity	Example	<u>م</u>			Structure	es II 4-24						ide 19 F COMPR	RESSION ME	MBI
Capacity ong colum	-		le		Structure	4-24	/8	A۱	l Com	e Stre	tinued) ength i	F COMPR		
Capacity	-	ng tab		×=0,		4-24	nape p/ft sign		vailable al Com W 58 P _h /Ω _c ¢ _c P _n	e Stre press -Shape 48	tinued) ength i sion, k s wex 40 $h P_{h}\Omega_{e} \phi_{e}F$	F COMPR n ips β P _n /Ω _c D ASD	$F_y = 50$	ksi

Ly CONTROLS KL = 0.8 (25') = 20'

Ţ				aila	abl	1a (c e Si ipre	trer	ngtł	n in		F _y =	50 H	csi
wa	в	-				-Sha		,					
Sha	pe						Wa	×					
lb/ft		67		58		48		40		35		3	
Des	ian	P_n/Ω_c	¢cPn	P_n/Ω_c	ф _с Р п	P_n/Ω_c	ф <i>с</i> Р _п	P_n/Ω_c	¢c₽n	P_n/Ω_c	¢cPn	P_n/Ω_c	¢c₽n
003	ign	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	590	886	512	769	422	634	350	526	308	463	273	411
5	6	542	815	470	706	387	581	320	481	281	423	249	374
je	7	526	790	455	685	375	563	309	465	272	409	241	362
rrat	8	508	763	439	660	361	543	298	448	262	394	232	348
f9)	9	488	733	422	634	347	521	285	429	251	377	222	333 317
Effective length, L_c (ft), with respect to least radius of gyration, r_y	10	467	701	403	606	331	497	272	409	239	359	211	
adit	11	444	668	384	576	314	473 447	258	388	226	340 321	200 189	301 283
stu	12 13	421 397	633 597	363 342	546 514	297 280	447	243 228	366 343	213 200	321	189	283
lea	14	373	560	321	482	260	394	213	321	187	281	165	248
8	15	348	523	299	450	244	367	198	298	174	261	153	230
Dect	16	324	487	278	418	226	340	183	275	160	241	141	212
Isa	17	300	450	257	386	209	314	169	253	147	221	130	195
£	18	276	415	236	355	192	288	154	232	135	203	118	178
Ň	19	253	381	216	325	175	264	141	211	123	104	108	162
E.	20	231	347	197	296	159	239	127	191	111	166	97.2	146
ı, Le	22	191	287	163	244	132	198	105	158	91.5	138	80.3	121
븅	24	160	241	137	205	111	166	88.2	133	76.9	116	67.5	101
ler	26	137	205	116	175	94.2	142	75.2	113	65.5	98.5	57.5	86.5
tive	28	118	177	100	151	81.2	122	64.8	97.4	56.5	84.9	49.6	74.5
ffec	30	103	154	87.5	131	70.7	106	56.5	84.9	49.2	74.0	43.2	64.9
•	32	90.3	136	76.9	116	62.2	93.5	49.6	74.6	43.3	65.0	38.0	57.1
	34	79.9	120	68.1	102	55.1	82.8	44.0	66.1				
						Propert	ties						
wo, kips		126	190	102	153	72.0	108	57.2	85.9	45.9	68.9	39.4	59.1
wi, kip/ir	n.	19.0	28.5	17.0	25.5	13.3	20.0	12.0	18.0	10.3	15.5	9.50	14.3
wb, kips		507	761	363	546	174	262	127	192	81.1	122	63.0	94.7
P _{fb} , kips		164	246	123	185	87.8	132	58.7	88.2	45.9	68.9	35.4	53.2
L _p , ft			7.49	7.42		7.35		7.21		7.17		7.18	
L _r , ft			47.6			35.2		29.9		27.0		24.8	
A _g , in. ²			19.7 17.					11.7 146		10.3 127		9.13 110	
I_{x} , in. ⁴ I_{y} , in. ⁴			272 88.6		228 75.1		184 60.9		146 49.1		42.6		37.1
r _y , in. 2.12			2.10		2.08		2.04		2.03		2.02		
r _y , m. 2.12 r _x /r _y 1.75		1.74		1.74		1.73		1.78		1.72			
PexLc2/104, k-in.2 7790			6530		5270 4180			3630		3150			
P _{ey} L _c ² /10 ⁴ , k-in. ² 2540		40	215	50						20 1060			
ASI	D	LRF	D	Note: H	eavy line	indicates	L _c /r _y equ	ual to or g	preater th	an 200.			
$\Omega_c = 0$	1.67												

1Po

American Institute of Steel Construction

Slide 20 of 20