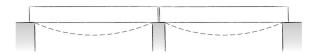
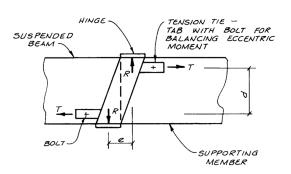
Gerber Beams

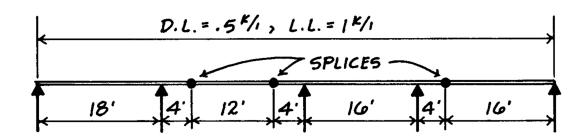

- Continuity in Beams
- Gerber Beams
- Optimization

University of Michigan, TCAUP Structures II 1 of 25

Continuous Beams

- Continuous over one or more supports
 - Most common in monolithic concrete
 - Steel: continuous or with moment connections
 - Wood: as continuous beams, e.g. long Glulam spans
- · Statically indeterminate
 - Cannot be solved by the three equations of statics alone
 - Internal forces (shear & moment) as well as reactions are affected by movement or settlement of the supports

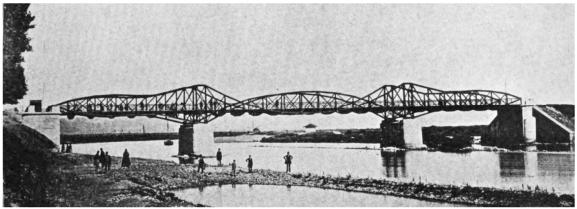

two spans - simply supported



two spans - continuous

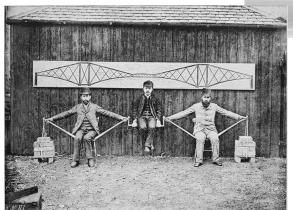
Splice or Hinge

- Can add one hinge for each redundant reaction
- Reduces length for transport
- Moment = 0 at hinge
- Can be used to balance and + moments for optimization


University of Michigan, TCAUP Structures II 3 of 25

Gottfried Heinrich Gerber (1832-1912)

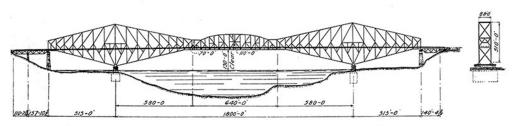
Developed a cantilever bridge spanning system used in many bridges worldwide. The system became know as the "Gerber Beam" and uses cantilever segments to support a simple span.


Haßfurter Brücke, 1864. Span of 38 m over the Main River.

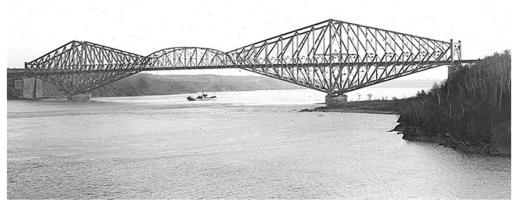
Examples of the Gerber system

Firth of Fourth Bridge, 1890

- total length 8094 ft.
- central span 1700 ft.
- Design Fowler & Baker
- Construction 1882 1889



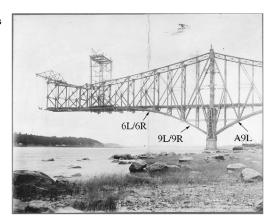
Static modeling of the Firth of Forth Bridge by Fowler & Baker



University of Michigan, TCAUP Structures II 5 of 25

Quebec Bridge Final Completion 1917

ST. LAWRENCE BRIDGE COMPANY DESIGN AS FINALLY APPROVED AND BUILT



Final successful completion 1917

University of Michigan, TCAUP Structures II 6 of 25

Quebec Bridge failure - 1907 and 1916

Compression members that failed in 1907

1916 hoisting failure

University of Michigan, TCAUP

Structures II

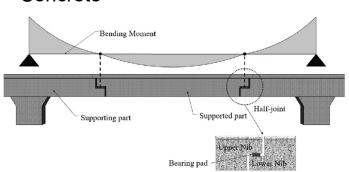
1907 failure due to miscalculation of the steel strength and dead load.

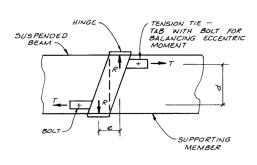
7 of 25

Gerber system in building frames

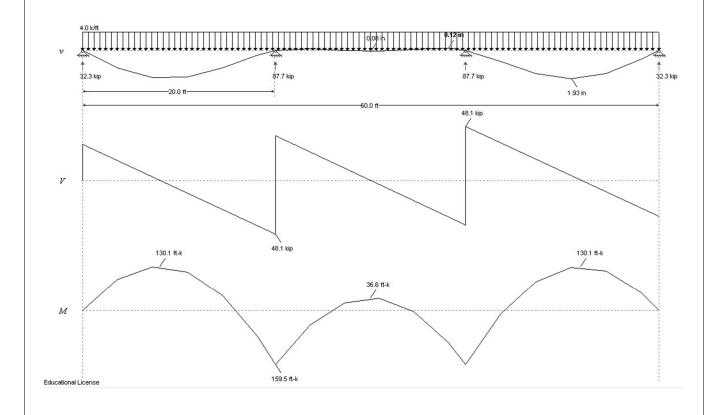
Gerber Beams in Detroit

University of Michigan, TCAUP Structures II 9 of 25

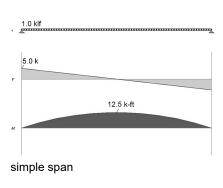

Example Gerber Beams

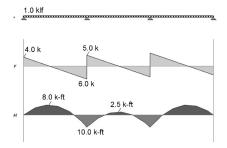


Steel

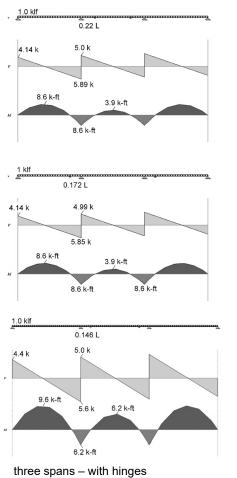

Concrete

Wood


Moment control in beams



Structures II

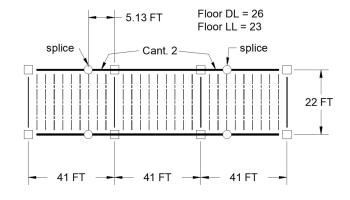

Moment control in beams Spans = 10 ft

University of Michigan, TCAUP

three spans - without hinges

11 of 25

Example Problem


Given:

Span and loading

- D + L = 49 psf
- 49 psf x 11 ft = 539 plf

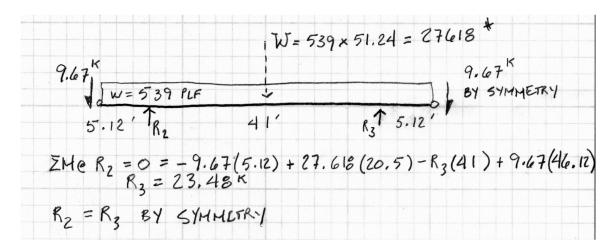
Find:

shear and moment beam section

FBD 1 Reactions

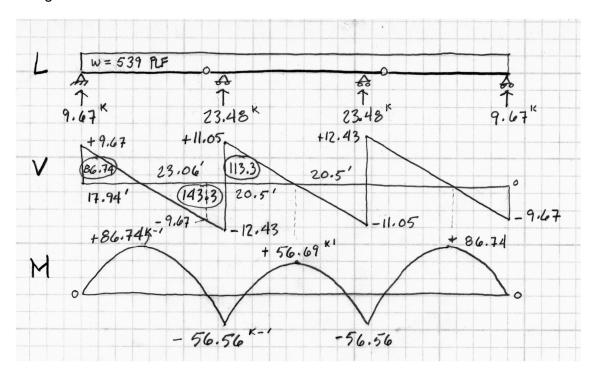
Reactions
$$|W = 539 \times 35.88 = 19339 *$$

$$|W = 539 \text{ PLF}$$


$$|X = 539 \times 35.88 = 19339 *$$

$$|W = 539 \times 15 = 19.34 \times 17.94 = 19.88$$

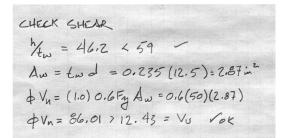
University of Michigan, TCAUP Structures II 13 of 25


Example Problem cont.

FBD 2 Reactions

Example Problem cont.

Force Diagrams



University of Michigan, TCAUP Structures II 15 of 25

Example Problem cont.

STEEL BEAM DESIGN

$$M_0 = 86.74 \text{ K-FT} \quad V_0 = 12.43 \text{ K}$$
 $M_0 = 4 \text{ Mn}$
 $M_0 = 4 \text{ Mn}$
 $M_0 = \frac{M_0}{4} = \frac{86.74}{6.7} = 96.38 \text{ K-FT}$
 $M_0 = \frac{M_0}{4} = \frac{86.74}{6.7} = 96.38 \text{ K-FT}$
 $M_0 = \frac{M_0}{4} = \frac{96.38(12)}{50 \text{ K/s}} = 23.13 \text{ m}^3$

Table 1-1 (continued) W-Shapes Dimensions

		Depth, d in.		Web			Flange				Distance					
Shape	Area,			Thickness, t_w in.		<u>t_w</u> 2 in.	Width, b _f in.		Thickness, t_f in.		k		K 1	7	Work- able	
·											k _{des}	k _{det} in.	in.	in.	Gage in.	
	in.2															
W12×58	17.0	12.2	121/4	0.360	3/8	3/16	10.0	10	0.640	5/8	1.24	11/2	15/16	91/4	51/2	
×53	15.6	12.1	12	0.345	3/8	3/16	10.0	10	0.575	9/16	1.18	1 ³ /8	15/16	91/4	51/2	
W12×50	14.6	12.2	121/4	0.370	3/8	3/16	8.08	81/8	0.640	5/8	1.14	11/2	15/16	91/4	51/2	
×45	13.1	12.1	12	0.335	5/16	3/16	8.05	8	0.575	9/16	1.08	13/8	15/16		.l.	
×40	11.7	11.9	12	0.295	5/16	3/16	8.01	8	0.515	1/2	1.02	1 ³ /8	7/8	🔻	٧	
W12×35°	10.3	12.5	121/2	0.300	5/16	3/16	6.56	61/2	0.520	1/2	0.820	13/16	3/4	10 ¹ /8	31/2	
×30°	8.79	12.3	12 ³ /8	0.260	1/4	1/8	6.52	61/2	0.440	7/16	0.740	11/8	3/4			
×26°	7.65	12.2	121/4	0.230	1/4	1/8	6.49	61/2	0.380	3/8	0.680	11/16	3/4	🔻	٧	
W12×22°	6.48	12.3	121/4	0.260	1/4	1/8	4.03	4	0.425	7/16	0.725	15/16	5/8	10 ³ /8	2 ¹ / ₄ ^g	
×19°	5.57	12.2	121/8	0.235	1/4	1/8	4.01	4	0.350	3/8	0.650	7/8	9/16			
×16°	4.71	12.0	12	0.220	1/4	1/8	3.99	4	0.265	1/4	0.565	13/16	9/16			
×14 ^{c,v}	4.16	11.9	117/8	0.200	3/16	1/8	3.97	4	0.225	1/4	0.525	3/4	9/16	🔻	¥	

Table 1-1 (continued) W-Shapes Properties

Nom-	Compact Section Criteria			Axis 2			Y-Y		r _{ts}	h _o	Torsional Properties			
Wt.			1	s	r Z		I S		r	Z			J	C _w
lb/ft	2tr	t _w	in.4	in.3	in.	in.3	in.4	in.3	in.	in.3	in.	in.	in.4	in.6
58	7.82	27.0	475	78.0	5.28	86.4	107	21.4	2.51	32.5	2.81	11.6	2.10	3570
53	8.69	28.1	425	70.6	5.23	77.9	95.8	19.2	2.48	29.1	2.79	11.5	1.58	3160
50	6.31	26.8	391	64.2	5.18	71.9	56.3	13.9	1.96	21.3	2.25	11.6	1.71	1880
45	7.00	29.6	348	57.7	5.15	64.2	50.0	12.4	1.95	19.0	2.23	11.5	1.26	1650
40	7.77	33.6	307	51.5	5.13	57.0	44.1	11.0	1.94	16.8	2.21	11.4	0.906	1440
35	6.31	36.2	285	45.6	5.25	51.2	24.5	7.47	1.54	11.5	1.79	12.0	0.741	879
30	7.41	41.8	238	38.6	5.21	43.1	20.3	6.24	1.52	9.56	1.77	11.9	0.457	720
26	8.54	47.2	204	33.4	5.17	37.2	17.3	5.34	1.51	8.17	1.75	11.8	0.300	607
22	4.74	41.8	156	25.4	4.91	29.3	4.66	2.31	0.848	3.66	1.04	11.9	0.293	164
19	5.72	46.2	130	21.3	4.82	24.7	3.76	1.88	0.822	2.98	1.02	11.9	0.180	131
16	7.53	49.4	103	17.1	4.67	20.1	2.82	1.41	0.773	2.26	0.983	11.7	0.103	96.9
14	8.82	54.3	88.6	14.9	4.62	17.4	2.36	1.19	0.753	1.90	0.961	11.7	0.0704	80.4

University of Michigan, TCAUP

Example Problem cont.

LOOK OF SECTION IN Zx TABLE

CHOOSE WIZX19

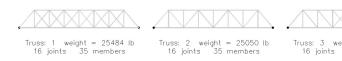
Zx = 24.7 > 23.13

\$Mn = 92.6 > 86.74

Table 3-2 (continued) Z_{x} W-Shapes $F_y = 50 \text{ ksi}$ Selection by Zx M_{px}/Ω_b $\phi_b M_{px}$ M_{rx}/Ω_b $\phi_b M_{rx}$ BF/Ω_b $\phi_b BF$ $V_{nx}/\Omega_v | \phi_v V_{nx}$ kip-ft kip-ft kip-ft kips kips kips in.3 ASD LRFD ASD LRFD ASD LRFD ft ft ASD LRFD in.4 W14×26 40.2 151 61.7 92.7 5.33 8.11 3.81 11.0 W8×40 W10×33 99.3 96.8 149 146 62.0 61.1 38.8 91.9 2.39 3.62 6.85 21.8 56.4 84.7 **58.3** 56.6 54.5 W12×26 37.2 87.7 W10×30 36.6 34.7 3.08 1.62 4.61 63.0 85.1 94.5 W8×35 86.6 130 81.9 2.43 7.17 27.0 **50.6** 48.7 48.0 82.8 125 76.1 4.78 7.27 3.67 10.4 199 63.0 94.5 W10×26 31.3 78.1 117 2.91 1.58 4.34 2.37 4.80 7.18 14.9 24.8 144 110 53.6 45.6 W8×31 72.2 W12×22 29.3 73.1 110 **44.4** 42.4 **66.7** 63.8 **4.68** 1.67 **7.06** 2.50 **3.00** 5.72 **156** 98.0 **64.0** 45.9 9.13 95.9 21.0 68.9 W10×22 64.9 97.5 40.5 60.9 2.68 4.02 4.70 13.8 118 49.0 73.4 24.7 61.6 92.6 37.2 55.9 4.27 6.43 8.61 130 86.0 57.3 54.9 1.60 2.40 5.69 82.7 38.9 **32.8** 31.8 49.4 3.18 4.76 3.09 **51.0** 41.4 9.73 96.3 76.5 20.4 50.9 W8×21 76.5 47.8 1.85 2.77 4.45 14.8 75.3 **20.1** 18.7 **50.1** 46.7 **29.9** 28.3 44.9 **2.73** 2.98 103 52.8 79.2 W10×17 70.1 42.5 2.98 4.47 9.16 81.9 48.5 W12×14^v W8×18 **17.4** 17.0 26.0 26.5 24.1 20.6 **43.4** 42.4 3.43 1.74 5.17 **2.66** 4.34 7.73 88.6 42.8 64.3 2.61 4.14 63.8 39.9 61.9 W10×15 W8×15 16.0 13.6 39.9 33.9 60.0 51.0 36.2 31.0 2.75 8.61 46.0 68.9 2.85 10.1 39.7 3.09 48.0 59.6 W10×12^t W8×13 **12.6** 11.4 **31.2** 28.4 **46.9** 42.8 **19.0** 17.3 **2.36** 1.76 28.6 3.53 2.87 26.0 2.67 2.98 9.27 39.6 36.8 W8×10f 8.87 21.9 32.9 13.6 20.5 1.54 2.30 3.14 8.52 30.8 26.8 40.2 ASD LRFD Shape does not meet the h/t_w limit for shear in AISC *Specification* Section G2.1(a) with $F_y=50$ ksi; therefore, $\phi_v=0.90$ and $\Omega_v=1.67$.

University of Michigan, TCAUP Structures II 17 of 25

Structural Optimization


Optimization procedure: Find the "best" solution for a given problem.

- Describe the goal objectives (single vs. multiple)
- Determine limitations constraints
- Describe the parameters variables

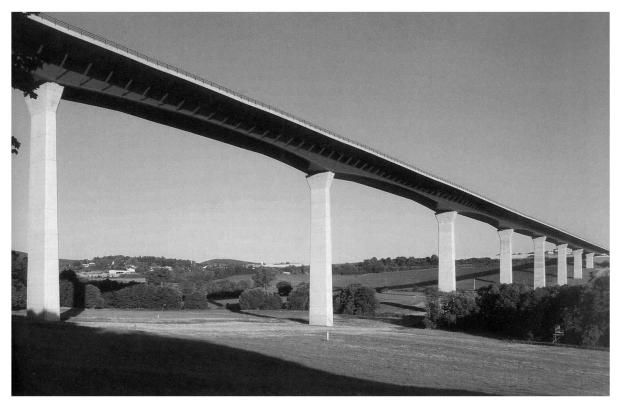
Optimization type: What to optimize

- Material
- Member (section)
- Geometry
- Topology

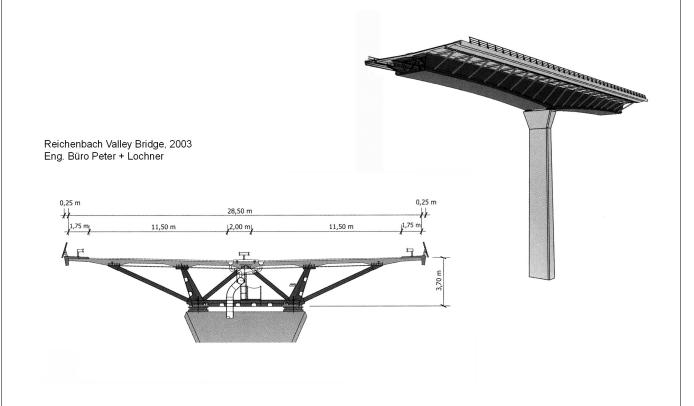
Optimization

- Material
 - Composites
 - Steel vs. Aluminum
- Member and Geometry
 - Variable Depth or Width
 - Holes and Cut-outs

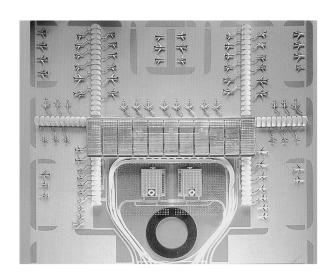
Biesenbach Viaduct, Blumberg Wutachtal Railroad, 1890 Eng. von Würthenau, Kräuter, Gebhard & Gernet



German Pavillion at Expo 1967, Montreal Eng. Frei Otto Arch. Rolf Gutbrot

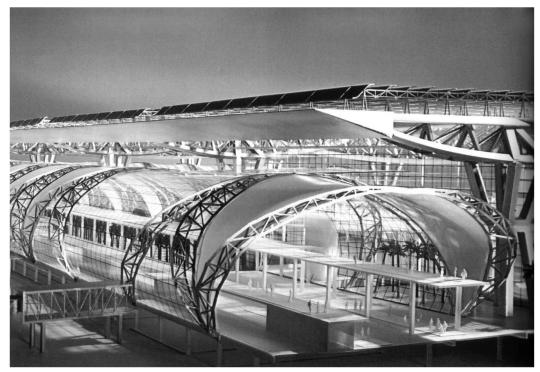

University of Michigan, TCAUP Structures II 19 of 25

Section Optimization

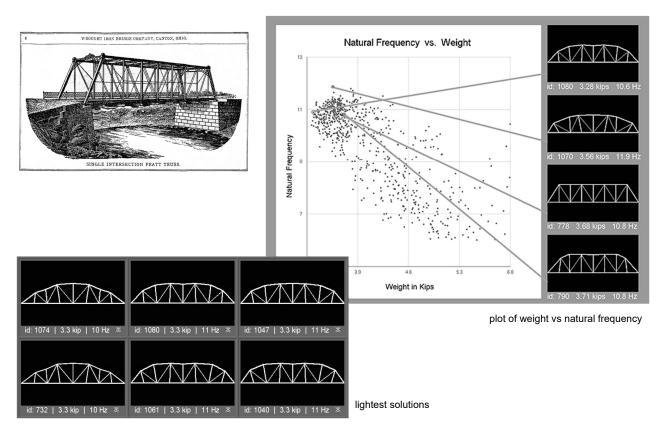

Reichenbach Valley Bridge, 2003 Eng. Büro Peter + Lochner

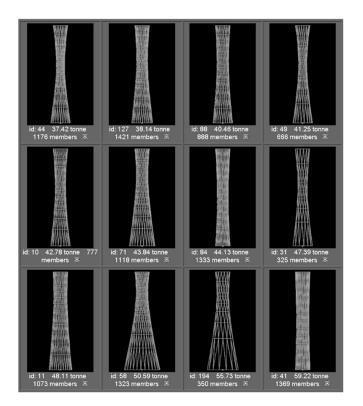
Section Optimization

University of Michigan, TCAUP Structures II 21 of 25


Geometry Optimization

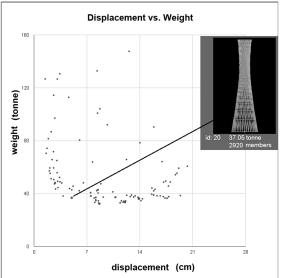
New Bangkok International Airport, 2003 Eng. Werner Sobek Arch. Murphy Jahn


Geometry Optimization


New Bangkok International Airport, 2003 Eng. Werner Sobek Arch. Murphy Jahn

University of Michigan, TCAUP Structures II 23 of 25

Geometry Optimization - Bridges



Topology Optimization - Shukhov towers

Nizhny Novgorod, 1896

University of Michigan, TCAUP

Structures II

25 of 25