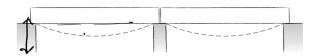
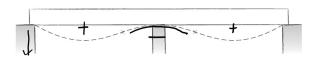
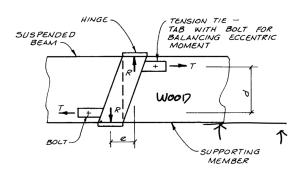
Gerber Beams

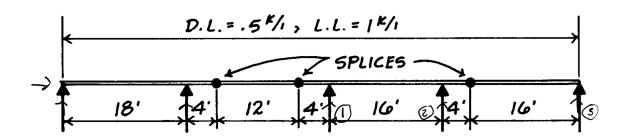

- Continuity in Beams
- Gerber Beams
- Optimization


University of Michigan, TCAUP Structures II 1 of 25

Continuous Beams

- Continuous over one or more supports
 - Most common in monolithic concrete
 - Steel: continuous or with moment connections
 - Wood: as continuous beams, e.g. long Glulam spans
- Statically indeterminate
 - Cannot be solved by the three equations of statics alone
 - Internal forces (shear & moment) as well as reactions are affected by movement or settlement of the supports

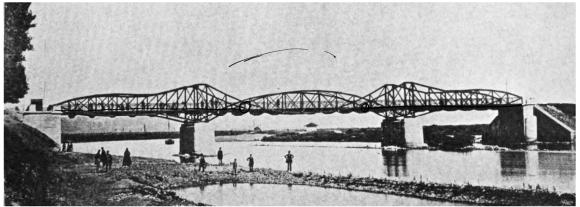

two spans - simply supported



two spans - continuous

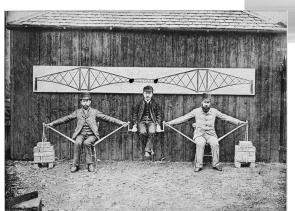
Splice or Hinge

- Can add one hinge for each redundant reaction
- Reduces length for transport
- Moment = 0 at hinge
- Can be used to <u>balance</u> and + moments for optimization


University of Michigan, TCAUP Structures II 3 of 25

Gottfried Heinrich Gerber (1832-1912)

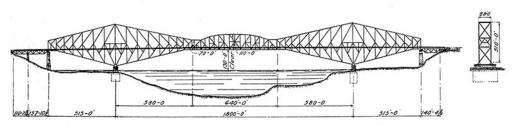
Developed a cantilever bridge spanning system used in many bridges worldwide. The system became know as the "Gerber Beam" and uses cantilever segments to support a simple span.


Haßfurter Brücke, 1864. Span of 38 m over the Main River.

Examples of the Gerber system

Firth of Fourth Bridge, 1890

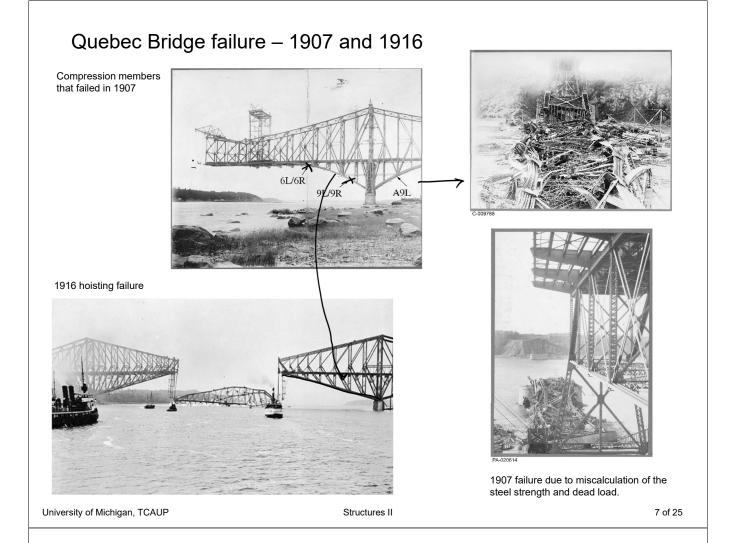
- total length 8094 ft.
- central span 1700 ft.
- Design Fowler & Baker
- Construction 1882 1889



Static modeling of the Firth of Forth Bridge by Fowler & Baker



University of Michigan, TCAUP Structures II 5 of 25

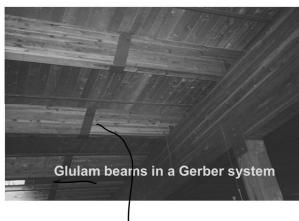

Quebec Bridge Final Completion 1917

ST. LAWRENCE BRIDGE COMPANY DESIGN AS FINALLY APPROVED AND BUILT

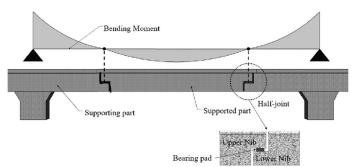
Final successful completion 1917

Gerber system in building frames

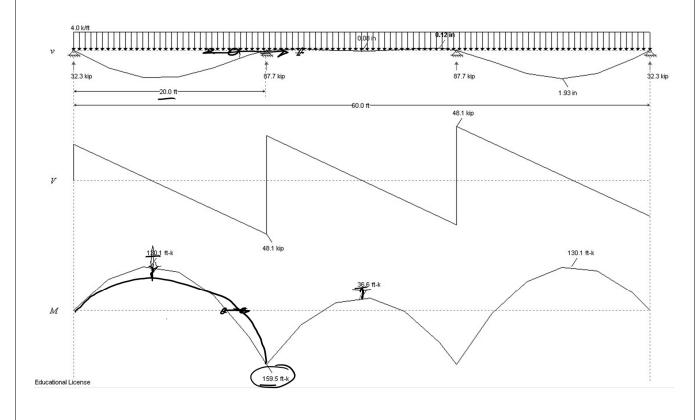
Gerber Beams in Detroit

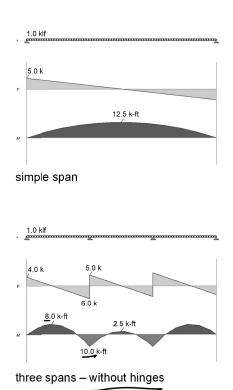


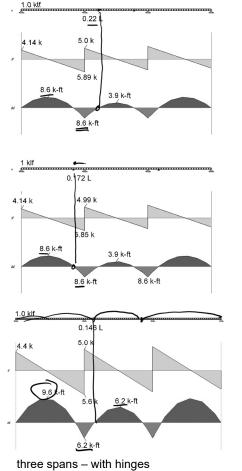
University of Michigan, TCAUP Structures II 9 of 25

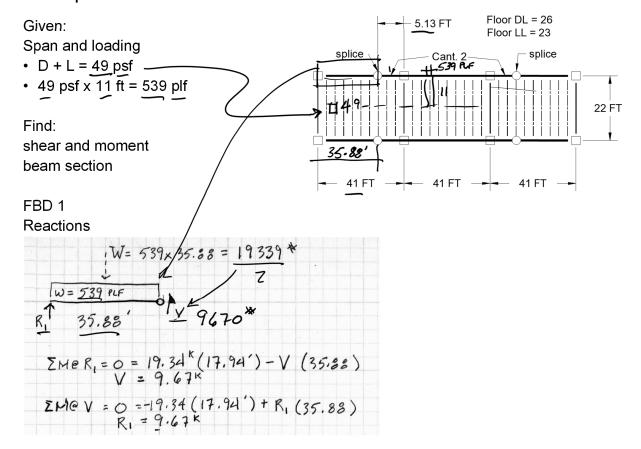

Example Gerber Beams

Steel

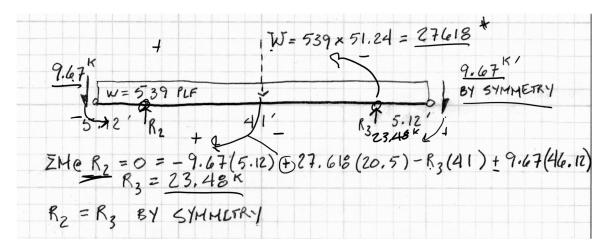

Concrete


Wood


Moment control in beams

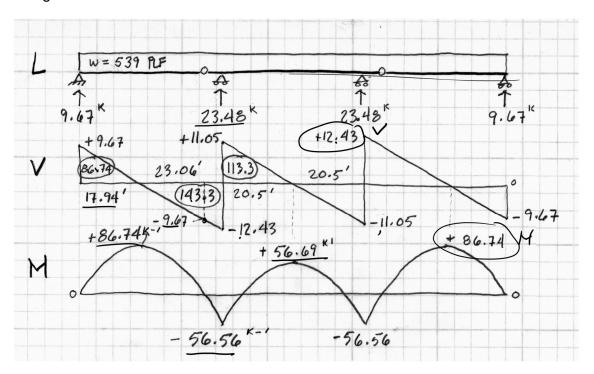

University of Michigan, TCAUP Structures II 11 of 25

Moment control in beams Spans = 10 ft

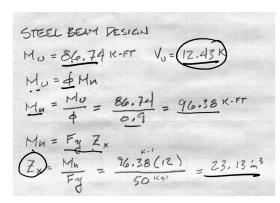

Structures II

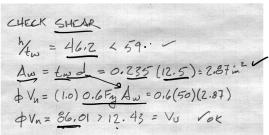
13 of 25

Example Problem cont.


FBD 2 Reactions

University of Michigan, TCAUP


Example Problem cont.


Force Diagrams

University of Michigan, TCAUP Structures II 15 of 25

Example Problem cont.

Table 1-1 (continued) W-Shapes **Dimensions**

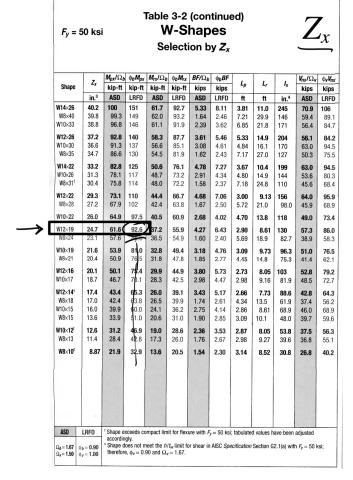
Shape		Depth, d in.		Web			Flange				Distance					
	Area,			Thickness, in.		<u>t_w</u> 2 in.	Width, b _f in.		Thickness, t_f in.		k		K 1	т	Work- able	
											k _{des}	k _{det}	~1	in.	Gage in.	
	in.2												in.			
W12×58	17.0	12.2	121/4	0.360	3/8	3/16	10.0	10	0.640	5/8	1.24	11/2	15/16	91/4	51/2	
×53	15.6	12.1	12	0.345	3/8	3/16	10.0	10	0.575	9/16	1.18	1 ³ /8	¹⁵ / ₁₆	91/4	51/2	
W12×50	14.6	12.2	121/4	0.370	3/8	3/16	8.08	81/8	0.640	5/8	1.14	11/2	¹⁵ / ₁₆	91/4	51/2	
×45	13.1	12.1	12	0.335	5/16	3/16	8.05	8	0.575	9/16	1.08	13/8	15/16			
×40	11.7	11.9	12	0.295	5/16	3/16	8.01	8	0.515	1/2	1.02	1 ³ /8	7/8	♥	٧	
W12×35°	10.3	12.5	121/2	0.300	5/16	3/16	6.56	61/2	0.520	1/2	0.820	13/16	3/4	10½	31/2	
×30°	8.79	12.3	123/8	0.260	1/4	1/8	6.52	61/2	0.440	7/16	0.740	11/8	3/4	l .l. l		
×26°	7.65	12.2	121/4	0.230	1/4	1/8	6.49	61/2	0.380	3/8	0.680	11/16	3/4	٧	¥	
W12×22°	6.48	12.3	121/4	0.260	1/4	1/8	4.03	4	0.425	7/16	0.725	15/16	5/8	10 ³ /8	2 ¹ / ₄ ^g	
×19°	5.57	12.2	121/	0.235) 1/4	1/8	4.01	4	0.350	3/8	0.650	7/8	9/16			
×16°	4.71	12.0	12	0.220	1/4	1/8	3.99	4	0.265	1/4	0.565	13/16	9/16			
×14 ^{c,v}	4.16	11.9	117/8	0.200	3/16	1/8	3.97	4	0.225	1/4	0.525	3/4	9/16	♥	V	

Table 1-1 (continued) W-Shapes **Properties**

	Nom- inal Compact Section Criteria			Axis X-X					ү-ү		r _{ts}	h _o	Torsional Properties		
	Wt.	<u>b</u> t	<u>h</u>	ı	S	r	\bigcirc	I	S	r	Z			J	C_w
	lb/ft	2tr	t _w	in.⁴	in.3	in.	in.3	in.⁴	in.3	in.	in.3	in.	in.	in.⁴	in.6
	58	7.82	27.0	475	78.0	5.28	86.4	107	21.4	2.51	32.5	2.81	11.6	2.10	3570
	53	8.69	28.1	425	70.6	5.23	77.9	95.8	19.2	2.48	29.1	2.79	11.5	1.58	3160
	50	6.31	26.8	391	64.2	5.18	71.9	56.3	13.9	1.96	21.3	2.25	11.6	1.71	1880
	45	7.00	29.6	348	57.7	5.15	64.2	50.0	12.4	1.95	19.0	2.23	11.5	1.26	1650
	40	7.77	33.6	307	51.5	5.13	57.0	44.1	11.0	1.94	16.8	2.21	11.4	0.906	1440
	35	6.31	36.2	285	45.6	5.25	51.2	24.5	7.47	1.54	11.5	1.79	12.0	0.741	879
	30	7.41	41.8	238	38.6	5.21	43.1	20.3	6.24	1.52	9.56	1.77	11.9	0.457	720
	26	8.54	47.2	204	33.4	5.17	37.2	17.3	5.34	1.51	8.17	1.75	11.8	0.300	607
9	22	4.74	41.8	156	25.4	4.91	29.3	4.66	2.31	0.848	3.66	1.04	11.9	0.293	164
¬ →	▶ 19	5.72	46.2	130	21.3	4.82	2 4.7	3.76	1.88	0.822	2.98	1.02	11.9	0.180	131
- 1	16	7.53	49.4	103	17.1	4.67	28.1	2.82	1.41	0.773	2.26	0.983	11.7	0.103	96.9
Structure	14	8.82	54.3	88.6	14.9	4.62	17.4	2.36	1.19	0.753	1.90	0.961	11.7	0.0704	80.4

WIZXI9 -

University of Michigan, TCAUP


Example Problem cont.

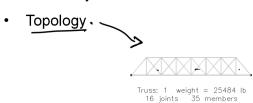
LOOK UP SECTION IN Zx TABLE

CHOOSE WIZX19

Zx = 24.7 > 23.13

\$\frac{4}{10} = \frac{92.6}{26.74} \tag{86.74}

University of Michigan, TCAUP Structures II 17 of 25


Structural Optimization

Optimization procedure: Find the "best" solution for a given problem.

- • Describe the goal objectives (single vs. multiple)
- Determine <u>limitation</u>s constraints
- Describe the parameters variables

Optimization type: What to optimize

- Material
- Member (section)
- Geometry SHAPE

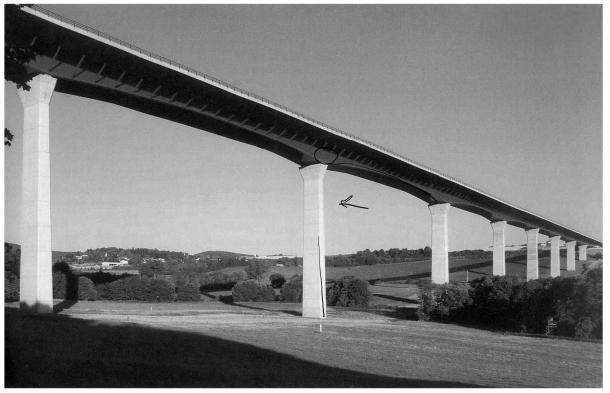
Truss: 2 weight = 25050 lb 16 joints 35 members

Truss: 3 weight = 24529 lb 16 joints 35 members

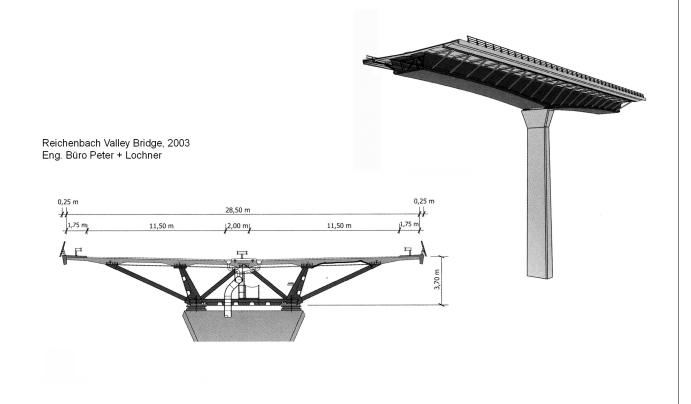
Optimization

- Material
 - Composites —
 - Steel vs. Aluminum
- Member and Geometry -
 - Variable Depth or Width
 - Holes and Cut-outs

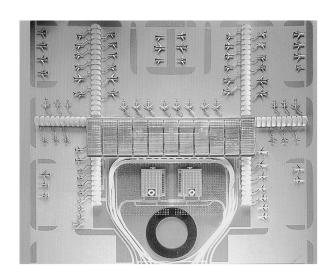
Biesenbach Viaduct, Blumberg Wutachtal Railroad, 1890 Eng. von Würthenau, Kräuter, Gebhard & Gernet



German Pavillion at Expo 1967, Montreal Eng. Frei Otto Arch. Rolf Gutbrot

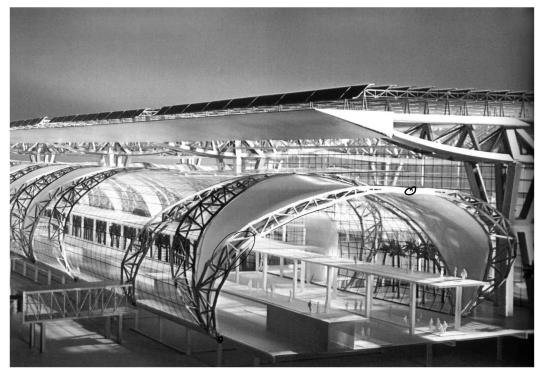

University of Michigan, TCAUP Structures II 19 of 25

Section Optimization

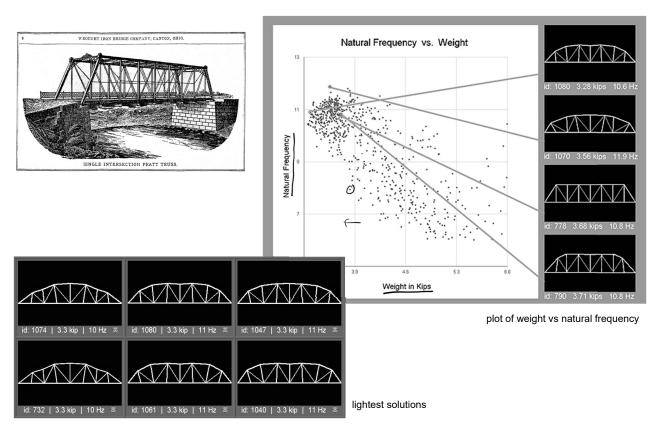

Reichenbach Valley Bridge, 2003 Eng. Büro Peter + Lochner

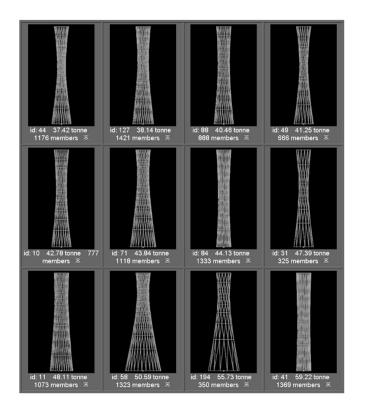
Section Optimization

University of Michigan, TCAUP Structures II 21 of 25


Geometry Optimization

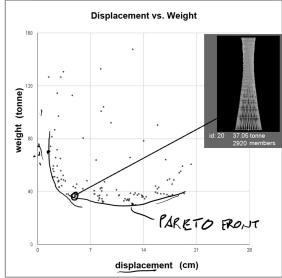
New Bangkok International Airport, 2003 Eng. Werner Sobek Arch. Murphy Jahn


Geometry Optimization


New Bangkok International Airport, 2003 Eng. Werner Sobek Arch. Murphy Jahn

University of Michigan, TCAUP Structures II 23 of 25

Geometry Optimization - Bridges



Topology Optimization - Shukhov towers

Nizhny Novgorod, 1896

University of Michigan, TCAUP

Structures II

25 of 25