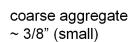

Reinforced Concrete

- Material Properties
 - Aggregate
 - Cement
 - Water
 - Reinforcement
- Strength
 - · Compression, f'c
 - · Tension, f't
- PCA Concrete Fundamentals



University of Michigan, TCAUP Structures II Slide 1 of 16

Constituents of Concrete

- Aggregate
- Cement
- Water

Fine aggregate (Sand) ≤ 1/4"

coarse aggregate ~ 1/2" to 1" (medium)

coarse aggregate ~ 1.5" (large)

Photos by Emadrazo

- Aggregate
- Cement
- Water

Characteristics:

- Abrasion resistance
- Freezing resistance
- Sulfate resistance
- · Alkali resistance
- Shape and texture
- Grading
- Void content
- Density
- Moisture absorption
- Flexural strength

crushed stone

smooth "river rock"

University of Michigan, TCAUP

Structures II

Slide 3 of 16

Constituents of Concrete

- Aggregate
- Cement
- Water

Ingredients:

- Limestone
- Cement rock
- Clay
- · Iron ore
- + (after firing and grinding)
- gypsum

Cement Types

- Type 1
 normal portland cement. Type 1 is a
 general use cement.
- Type 2
 is used for structures in water or soil
 containing moderate amounts of sulfate,
 or when heat build-up is a concern.
- Type 3
 high early strength. Used when high
 strength are desired at very early periods.
- Type 4
 low heat portland cement. Used where the amount and rate of heat generation must be kept to a minimum.
- Type 5
 Sulfate resistant portland cement. Used where water or soil is high in alkali.
- Types IA, IIA and IIIA are cements used to make air-entrained concrete.

- Aggregate
- Cement
- Water

"potable"

No sulfates or organic impurities

Add mixtures:

- Air-entraining
- · Water-reducing
- Plasticizers
- Accelerating
- Retarding
- Hydration control
- Shrinkage reducer
- · Alkali-silicate inhibitor
- Coloration
- Bonding
- Foaming
- · And others...

University of Michigan, TCAUP

Structures II

Slide 5 of 16

Constituents of Concrete

batch guidelines

Common Concrete Mix Ratios:

1:2:3 (Cement:Sand:Gravel):

This is a widely used ratio for general construction, offering a good balance of strength and workability.

1:1.5:3 (Cement:Sand:Gravel):

Another popular option, especially for foundations and beams, offering a good balance of strength and durability.

1:4:8 (Cement:Sand:Gravel):

This ratio is preferred for foundations and mass concrete work.

1:1:2 (Cement:Sand:Gravel):

This ratio is used for construction work that requires high-strength concrete.

PCA batch tables

Table 9-16 (Inch-Pound). Proportions by Mass to Make One Cubic Foot of Concrete for Small Jobs

	Nominal maximum size coarse aggregate, in.	Air-entrained concrete				Non-air-entrained concrete			
siz		Cement,	Wet fine aggregate, Ib	Wet coarse aggregate, lb*	Water, Ib	Cement,	Wet fine aggregate, Ib	Wet coarse aggregate, Ib	Water, Ib
	%	29	53	46	10	29	59	46	11
	1/2	27	46	55	10	27	53	55	11
	3/4	25	42	65	10	25	47	65	10
	1	24	39	70	9	24	45	70	10
	1½	23	38	75	9	23	43	75	9

^{*}If crushed stone is used, decrease coarse aggregate by 3 lb and increase fine aggregate by 3 lb.

Table 9-17. Proportions by Bulk Volume* of Concrete for Small Jobs

Nominal	Air-entrained concrete				Non-air-entrained concrete			
maximum size coarse aggregate, mm (in.)	Cement	Wet fine aggregate	Wet coarse aggregate	Water	Cement	Wet fine aggregate	Wet coarse aggregate	Water
9.5 (%)	1	21/4	11/2	1/2	1	21/2	11/2	1/2
12.5 (½)	1	21/4	2	1/2	1	21/2	2	1/2
19.0 (¾)	1	21/4	21/2	1/2	1	21/2	21/2	1/2
25.0 (1)	1	21/4	23/4	1/2	1	21/2	2¾	1/2
37.5 (1½)	1	21/4	3	1/2	1	21/2	3	1/2

^{*}The combined volume is approximately % of the sum of the original bulk volumes.

University of Michigan, TCAUP

Structures II

Slide 7 of 16

Constituents of Concrete

W/C ratios

Understanding the w/c Ratio:

- Definition: The w/c ratio is the ratio of the weight of water to the weight of cement used in a concrete mix.
- Importance: It's a critical factor in concrete mix design, influencing strength, durability, and workability.
- · How it affects strength:
 - Lower w/c ratio: Leads to higher strength and durability, reduced shrinkage, and lower permeability.
 - Higher w/c ratio: Results in lower strength and increased permeability, potentially leading to cracking and reduced durability.
- Typical Range: The typical w/c ratio for different grades of concrete mix falls between 0.40 and 0.60.
- Minimum w/c ratio: The minimum w/c ratio is 0.30 0.35.
- Workability: A lower w/c ratio can make the concrete mix stiffer and more difficult to work with, requiring the use of plasticizers or superplasticizers to improve workability.

W/C ratios - Strength

Concrete Strength and w/c Ratio:

Water-Cement Ratio (w/c)	Approximate Compressive Strength (psi)	Notes
0.8	2000	Fairly weak concrete, more water
0.50	-	Maximum for normal strength concrete
0.45		Maximum for high strength concrete
0.30 - 0.35	1—1	Minimum w/c ratio
0.3	Too stiff to handle	Requires superplasticizers

University of Michigan, TCAUP Structures II Slide 9 of 16

Workability

Measured in inches of "slump" of a molded cone of fresh mix.

- range 1" to 4" with vibration
- 2" to 6" without vibration

Water/Cement Ratio

- range 0.4 to 0.7
- for strength: higher is weaker
- for workability: higher is more workable

Cement Content

- · LBS per cubic yard
- range 400-800 lbs/yd3
- · dependent on aggregate
- · increases cost

Photos by Tano under cc license

Slump and Workability

Slump and Workability:

Slump Test:

The slump test measures the consistency of fresh concrete by observing how much it settles after being poured into a cone.

Slump Range:

- 0-1 inch (0-25 mm): Very low workability, suitable for dry mixes like pavements.
- 1-2 inches (25-50 mm): Low workability, suitable for foundations with light reinforcement.
- 2-4 inches (50-100 mm): Medium workability, suitable for manually compacted flat slabs.
- 4-7 inches (100-175 mm): High workability, suitable for sections with tight reinforcement or where concrete needs to flow a great distance.

University of Michigan, TCAUP

Structures II

Slide 11 of 16

Reinforcing

Grade = Yield strength

- gr. 40 is 40 ksi
- gr. 60 is 60 ksi
- gr. 75 is 75 ksi

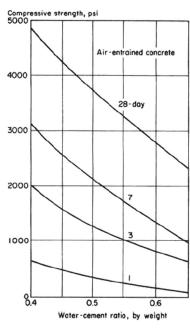
Size in 1/8 inch increments

- #4 is ½ inch dia.
- #6 is 3/4 inch dia.

Deformation Patterns

· add to bond with concrete

Minimum Spacing


- between bars (horizontal) the greatest of the 3 is the minimum
 - Bar diameter
 - 1"
 - 5/4 x max aggregate size
- between layers (vertical)
- cover
 - 3" against soil
 - 1.5"-2" exterior
 - 3/4" interior

REINFORCEMENT

Curing

Strength increases with age. The "design" strength is 28 days.

8000 Non-air - entrained concrete
5000 28-day
1000 3000 7
1000 0.4 0.5 0.6 0.7
Water - cement ratio, by weight

Compressive strength, psi

Portland Cement Association

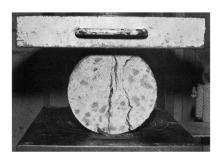
University of Michigan, TCAUP

Structures II

Slide 13 of 16

Strength Measurement

Compressive strength


- 12"x6" cylinder
- · 28 day moist cure
- · Ultimate (crushing) strength

Tensile strength

12"x6" cylinder

- 28 day moist cure
- Ultimate (failure) strength
- · Split cylinder test
- ca. 10% of f'c

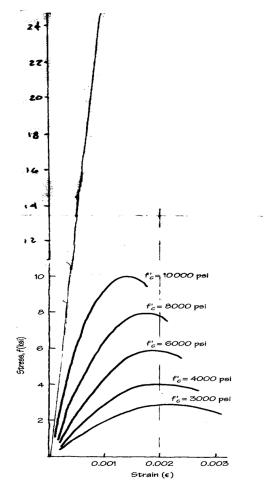
Young's Modulus

Depends on density and strength

$$E_c = w_c^{1.5} 33 \sqrt{f_c'}$$

 w_c = concrete density

 f_c = concrete compressive strength


For normal weight concrete (144 PCF)

$$E_c = 57000\sqrt{f_c^{'}}$$

Examples:

f' _c	E_c
10000 psi	5,700,000 psi
8000 psi	5,098,000 psi
6000 psi	4,415,000 psi
4000 psi	3,605,000 psi
3000 psi	3,122,000 psi

University of Michigan, TCAUP Structures II Slide 15 of 16

