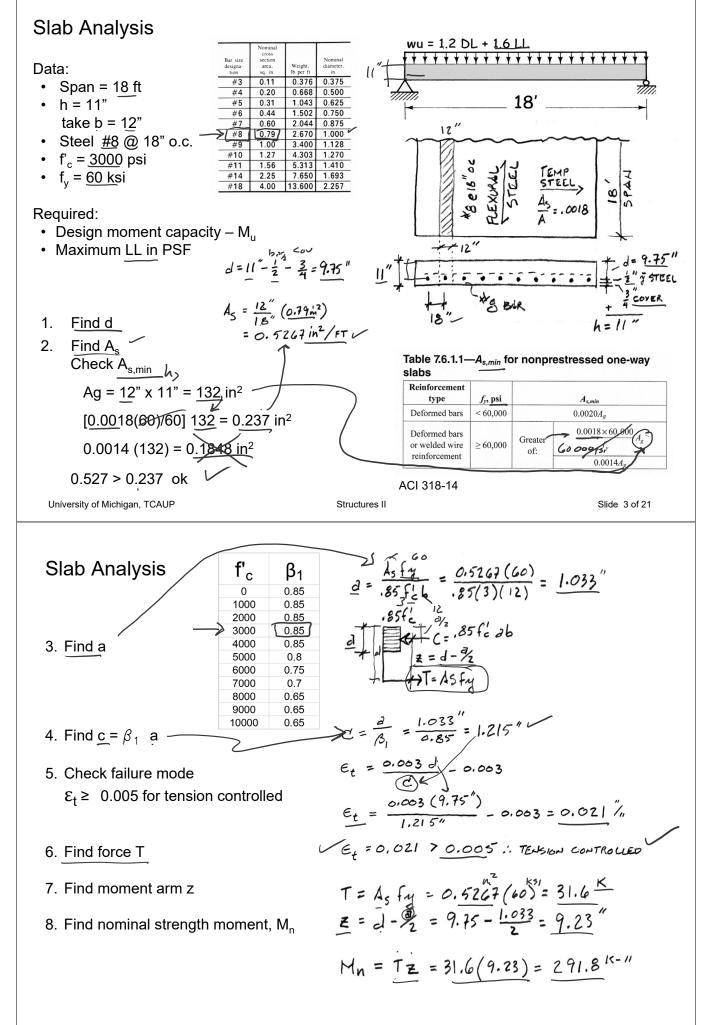
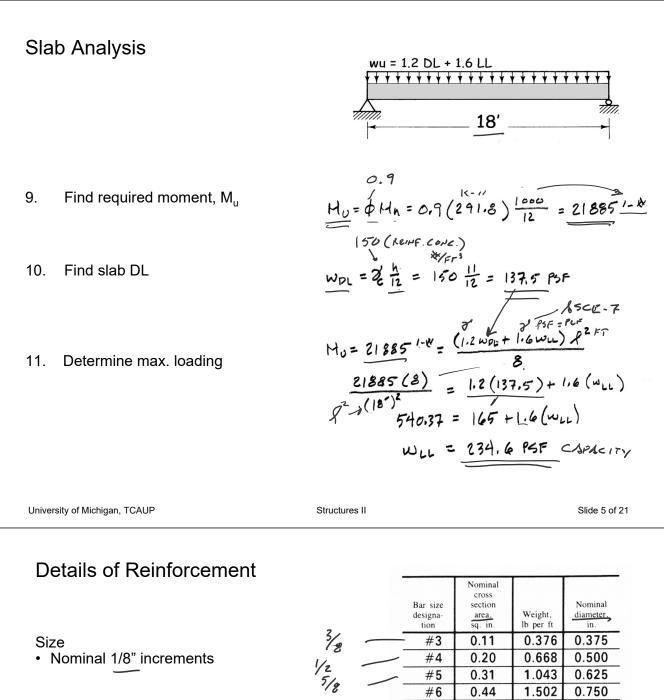
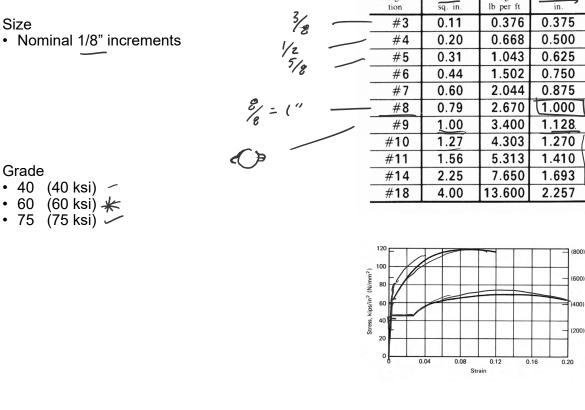

Architecture 324 Structures II

Reinforced Concrete Beams Ultimate Strength Design (ACI 318-14) - PART II

- Rectangular Slab Analysis
- Reinforcement Detailing
- Rectangular Beam Design Method I




 ϕ Mn \geq Mu (if $\varepsilon_t \geq 0.005$ then $\phi = 0.9$)


8. Determine max. loading (or span)

Data:

 $1.6w_{LL} = \frac{M_u 8}{l^2} - 1.2w_{DL}$

Details of Reinforcement

ACI 318 Chapter 25.2 Placement of Reinforcement

- Cover (ACI 20.6.1)
- Horizontal spacing in beams, s_h (ACI 25.2.1)
 <u>1 inch</u>

$$\frac{d_b}{4/3} d_{agg,max}$$

• Vertical spacing in beams (ACI 25.2.2) Min 1 inch

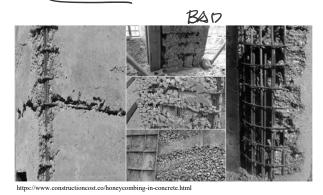
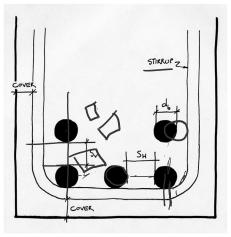



Table 20.6.1.3.1—Specified concrete cover for cast-in-place nonprestressed concrete members

Concrete exposure	Member	Reinforcement	Specified cover, in.
Cast against and permanently in contact with ground	All	All	3
Exposed to weather		No. 6 through No. 18 bars	2
or in contact with ground	All	No. 5 bar, W31 or D31 wire, and smaller	1-1/2
Not exposed to weather or in contact with ground	Slabs, joists,	No. 14 and No. 18 bars	1-1/2
	and walls	No. 11 bar and smaller	3/4
	Beams, columns, pedestals, and tension ties	Primary reinforce- ment, stirrups, ties, spirals, and hoops	1-1/2

University of Michigan, TCAUP

Structures II

Slide 7 of 21

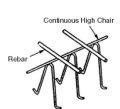
Details of Reinforcement

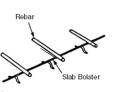
ACI 318 Chapter 25 Placement of Reinforcement

- · Chairs
- Bolsters

http://contractorsupplymagazine.com

High Chai


Reba



Continuous High Chair

Details of Reinforcement

ACI 318 Chapter 25

Minimum bend diameter

• factor x d_b

Hooks for bars in tension

- ACI Table 25.3.1
- · Inside diameter

Bends for stirrups

• ACI Table 25.3.2

Table 25.3.1—Standard hook geometry for development of deformed bars in tension

Type of standard hook	Bar size	Minimum inside bend diameter, in.	Straight extension ^[1] ℓ _{ext} in.	Type of standard hook	
	No. 3 through No. 8	6d _b 3	63 9	Point at which bar is developed	
90-degree	No. 9 through No. 11	8 <i>d</i> _b	8 4 4 12 <i>d</i>	4 90-degree bend	
hook	hook No. 14 and No. 18	10 <i>d</i> _b	1246	Diameter	
	No. 3 through No. 8	$6d_b$		Point at which bar is developed	
180-degree	No. 9 through No. 11	8 <i>d</i> _b	Greater of		
hook	No. 14 and No. 18	10 <i>d</i> _b	$4d_b$ and 2.5 in.	Diameter bend	

¹⁰A standard hook for deformed bars in tension includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

Table 25.3.2—Minimum inside bend diameters and standard hook geometry for stirrups, ties, and hoops

Type of stan- dard hook	Bar size	Minimum inside bend diameter, in.	Straight extension ^[1] <i>l</i> _{exp} in.	Type of standard hook
90-degree	No. 3 through No. 5	$4d_b$	Greater of $6d_b$ and 3 in.	d _b 90-degree
hook	No. 6 through No. 8	6 <i>d</i> _b	12 <i>d</i> _b	Diameter
135-degree	No. 3 through No. 5	4 <i>d</i> _b	Greater of 6 <i>d_b</i> and 3 in.	db 135-degree
hook	No. 6 through No. 8	6 <i>d</i> _b		Diameter
180-degree	No. 3 through No. 5	4 <i>d</i> _b	Greater of	d _b 180-degre
hook No. 6 through No. 8	through	6 <i>d</i> _b	4 <i>d_b</i> and 2.5 in.	Diameter bend

¹¹A standard hook for stirrups, ties, and hoops includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

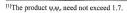
University of Michigan, TCAUP

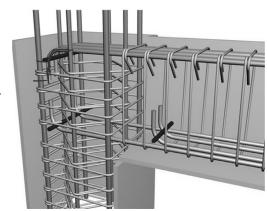
Structures II

Slide 9 of 21

Details of Reinforcement

ACI 318 Chapter 25


Development length of bars


• 12" min

• Based on table 25.4.2.2

Table 25.4.2.4—Modification factors for development of deformed bars and deformed wires in tension

Modification factor	Condition	Value of factor
	Lightweight concrete	0.75
Lightweight	Lightweight concrete, where f_{ct} is specified	In accordance with 19.2.4.3
	Normalweight concrete	1.0
$\underbrace{\frac{\text{Epoxy}^{[1]}}{\psi_e}}_{\psi_e}$	Epoxy-coated or zinc and epoxy dual-coated reinforcement with clear cover less than $3d_b$ or clear spacing less than $6d_b$	1.5
	Epoxy-coated or zinc and epoxy dual- coated reinforcement for all other conditions	1.2
	Uncoated or zinc-coated (galvanized) reinforcement	1.0
Size	No. 7 and larger bars	1.0
Ψ_s	No. 6 and smaller bars and deformed wires	0.8
Casting position ^[1]	More than 12 in. of fresh con- crete placed below horizontal reinforcement	1.3
Ψ_t	Other	1.0

https://www.buildinghow.com

Spacing and cover	No. 6 and smaller bars and deformed wires	No. 7 and larger bars
Clear spacing of bars or wires being developed or lap spliced not less than d_b , clear cover at least d_b , and stirrups or ties throughout ℓ_d not less than the Code minimum or Clear spacing of bars or wires being developed or lap spliced at least $2d_b$ and clear cover at least d_b	$\underbrace{\left(\frac{f_{y}\boldsymbol{\psi},\boldsymbol{\psi}_{e}}{25\lambda\sqrt{f_{c}^{\prime}}}\right)}_{\boldsymbol{\psi}_{b}}d_{b}$	$\left(\frac{f_{y}\psi_{i}\psi_{e}}{20\lambda\sqrt{f_{c}'}}\right)d_{b}$
Other cases	$\left(\frac{3f_y\psi_i\psi_e}{50\lambda\sqrt{f_c'}}\right)d_b$	$\left(\frac{3f_y\psi_i\psi_e}{40\lambda\sqrt{f_c'}}\right)d_b$

Other Useful Tables:

					C	ustomary Uni	ts		SI Units	
				Bar No.	Diameter (in.)	Cross- sectional Area (in. ²)	Unit Weight (lb/ft)	Diameter (mm)	Cross- sectional Area (mm ²)	Unit Weight (kg/m)
Table A	.1 Values of M	odulus of Ela	sticity for	1 3	0.375	0.11	0.376	9.52	71	0.560
	Normal-Wei	ght Concrete		4	0.500	0.20	0.668	12.70	129	0.994
Custo		CI I	Jnits	5	0.625	0.31	1.043	15.88	200	1.552
	mary Units			6	0.750	0.44	1.502	19.05	284	2.235
f_c'	$\frac{E_c}{(mai)}$	f_c' (MPa)	E _c (MPa)	7	0.875	0.60	2.044	22.22	387	3.042
(psi)	(psi)	. ,		8	1.000	0.79	2.670	25.40	510	3.973
3,000	3,140,000	20.7	21 650	9	1.128	1.00	3.400	28.65	645	5.060
3,500	3,390,000	24.1	23 373	10	1.270	1.27	4.303	32.26	819	6.404
4,000	3,620,000	27.6	24 959	11	1.410	1.56	5.313	35.81	1006	7.907
4,500	3,850,000	31.0	26 545	14	1.693	2.25	7.650	43.00	1452	11.384
5,000	4,050,000	34.5	27 924	18	2.257	4.00	13.600	57.33	2581	20.238

Table A.2 Designations, Areas, Perimeters, and Weights of Standard Bars

Jack C McCormac, 1978, Design of Reinforced Concrete,

Table A.4 Areas of Groups of StandardBars (in.²)

						Num	ber of Ba	rs					
Bar No.	2	3	4	5	6	7	8	9	10	11	12	13	1,4
- 4	0.39	0.58	0.78	0.98	1.18	1.37	1.57	1.77	1.96	2.16	2.36	2.55	2.75
5	0.61	0.91	1.23	1.53	1.84	2.15	2.45	2.76	3.07	3.37	3.68	3.99	4.30
6	0.88	1.32	1.77	2.21	2.65	3.09	3.53	3.98	4.42	4.86	5.30	5.74	6.19
7	1.20	1.80	2.41	3.01	3.61	4.21	4.81	5.41	6.01	6.61	7.22	7.82	8.42
8	1.57	2.35	3.14	3.93	4.71	5.50	6.28	7.07	7.85	8.64	9.43	10.21	11.00
9	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00
10	2.53	3.79	5.06	6.33	7.59	8.86	10.12	11.39	12.66	13.92	15.19	16.45	17.72
11	3.12	4.68	6.25	7.81	9.37	10.94	12.50	14.06	15.62	17.19	18.75	20.31	21.87
14	4.50	6.75	9.00	11.25	13.50	15.75	18.00	20.25	22.50	24.75	27.00	29.25	31.50
18	8.00	12.00	16.00	20.00	24.00	28.00	32.00	36.00	40.00	44.00	48.00	52.00	56.00

University of Michigan, TCAUP

Structures II

Slide 11 of 21

Rectangular Beam Design

Two approaches:

Method 1:

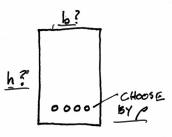
Data:

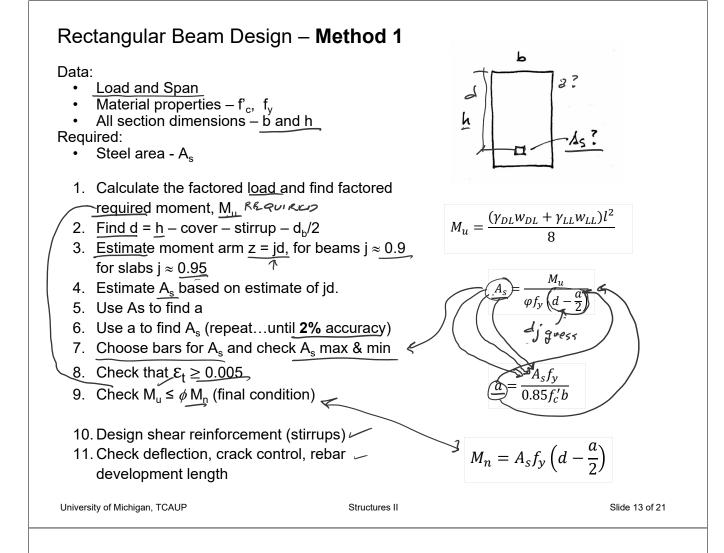
- Load and Span
- Material properties f'_c, f_v
- All section dimensions: h and b

Required:

Steel area – A_s


Method 2:


Data:


- Load and Span
- Some section dimensions h or b
- Material properties f'_c, f_v
- Choose ρ

Required:

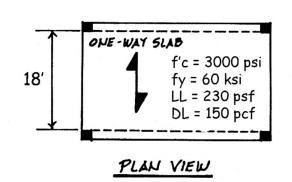
- Steel area <u>A</u>
- Beam dimensions b or h

One-way Slab Design Method 1

Data:

- · Load and Span
- Material properties f[']_c, f_v
- All section dimensions:
- h (based on deflection limit)
- b = typical 12" width

Required:


Steel area – A_s

University of Michigan, TCAUP

First estimate the slab thickness, h.

Try first the recommended minimum.

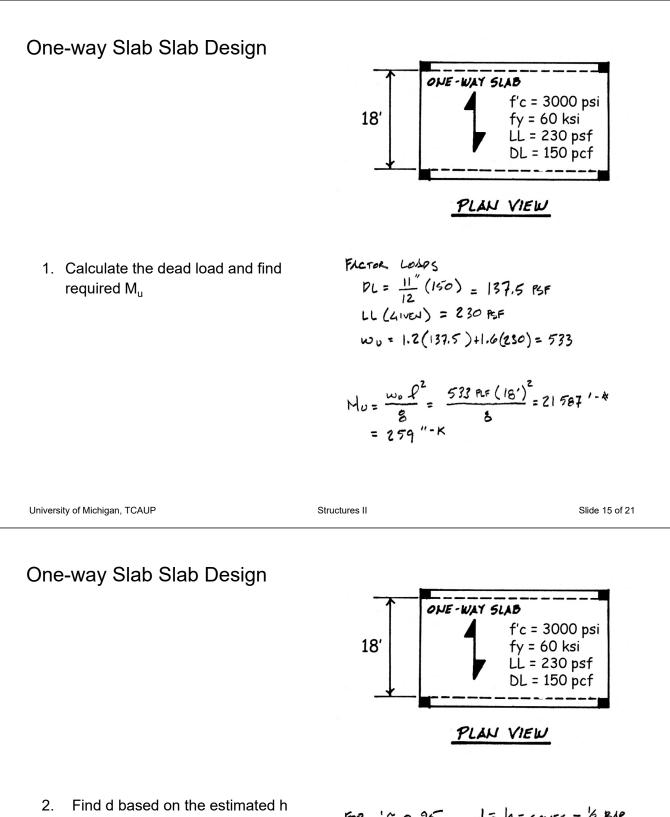
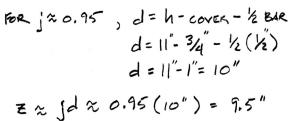

Deeper sections require less steel, but of course more concrete.

Table 7.3.1.1—Minimum thickness of solid nonprestressed one-way slabs


Support condition	Minimum h ^[1]
Simply supported	<i>ℓ</i> /20
One end continuous	<i>ℓ</i> /24
Both ends continuous	ℓ/28
Cantilever	<i>€</i> /10

THICKNESS, h, BASED ON DEFLECTION $h = \frac{R_{10}}{20} = \frac{18 \times 12}{20} = 10.8"$ USE II"

3. Estimate moment arm $z \approx 0.95 d$

and rebar size (guessing #4)

One-way Slab Slab Design

4. Estimate A_s based on estimate of z

- 5. Use A_s to find a
- 6. Use a to find A_s (repeat...)

TRIAL I $A_{5} = \frac{M_{U}}{\phi f_{y}(z)} = \frac{259''''}{0.9(60 \text{ KsI})(9.5)''} = 0.505 \text{ in}^{2}$ $a = \frac{A_{5} f_{y}}{.85 f_{c}} = \frac{0.505(c0)}{.85(3)(12)} = 0.99''$

$$\frac{1}{4} \frac{1}{4} \frac{1}{5} \frac{1}{4} \frac{1}{5} \frac{1}$$

One-way Slab Slab Design

7. Choose bars for A_s required:

either

choose bars and calculate spacing or

choose spacing and find bar size If the bar size changes, re-calculate to find new d. Then, re-calculate A_s...

Check A_{s,min}

(for slabs A_{s.min} from ACI Table 7.6.1.1)

Table 7.6.1.1-	As,min for nonprestressed one-way
slabs	
DIC	

type	<i>f_y</i> , psi		A _{s,min}
Deformed bars	< 60,000		$0.0020 A_{g}$
Deformed bars or welded wire	≥ 60,000	Greater of:	$\frac{0.0018 \times 60,000}{f_y} A_g$
reinforcement	1.1.1.1		$0.0014A_{g}$

$$\frac{0.505}{12''} : \frac{0.2}{s} = 4.75''$$
i. USE 4" o.c. (always round down)
 $A_5 = 0.60 \text{ m}^2/\text{FT} > 0.505 \text{ //}$

ALTERNATE FOR MAX. S =18"

$$\frac{0.505}{12''} : \frac{A_b}{18''} \qquad A_b = 0.75 \text{ m}^2$$

$$\frac{A_b}{18''} \qquad \frac{A_b}{18''} = 0.79$$

$$\frac{1}{100} \text{ m}^2 \text{ m}^2$$

Check As,min

As min = 0.0018 bh = 0.0018(12)(11")
= 0.24
$$m^2 < 0.526m^2 = 0 \ K$$

One-way Slab Slab Design

8. Check that $\varepsilon_t \ge 0.005$

RE-CALC 2 FOR
$$A_{5} = 0.6 \frac{m^{3}}{PT}$$

 $d = \frac{A_{5} f_{M}}{0.85 f_{c}} = \frac{0.6(60)}{0.85(3)(12)} = 1.176''$
 $C = \frac{2}{B_{1}} = \frac{1.176}{0.85} = 1.384''$
 $G_{4} = \frac{d-c}{c} 0.003 =$
 $= \frac{9.5''-1.384''}{1.384''} 0.003 = 0.01759$
 $0.01759 > 0.005$
 $i. TENSION CONTROLLED /$

University of Michigan, TCAUP

Structures II

Slide 19 of 21

One-way Slab Slab Design

9. Check $M_u \le \phi M_n$ (final condition)

> $A_s = A_{s,used}$ $M_n = Tz$

- 10. Add stirrups (no stirrups in slab)
- 11. Check deflection, crack control, and rebar development length

$$M_{n} = A_{3}F_{y}\left(d - \frac{z^{2}}{2}\right)$$

$$M_{n} = 0.6(60)\left(9.5^{n} - \frac{1.176}{2}\right)$$

$$M_{n} = 36\left(8.911^{n}\right) = 320.8^{K-11}$$

$$M_{n} = 0.9\left(320.8\right) = 288.7^{K-11}$$

$$M_{0} = 259^{K-11} < 288.7^{K-11}$$

$$M_{0} < d_{1}M_{1} \quad \checkmark = \times$$

Rectangular Beam Design - Method 2

Data:

- Load and Span
- Some section dimensions b or h
- Material properties f'_c , f_y

Required:

- Steel area A_s
- Beam dimensions b and h
- 1. Estimate the dead load (estimate h and b) $(L/8 \le h \le L/21, h \approx L/12$ and b:h \approx 1:2 to 2:3), find M_u
- 2. Choose ρ (equation assumes $\varepsilon_t = 0.0075$) 3. Calculate bd^2
- Calculate bd²
 Change b and and
- 4. Choose b and solve for d (or d and solve b)
- 5. Revise h, weight, M_u , and bd^2
- 6. Find $A_s = \rho bd$
- 7. Choose bars for ${\rm A}_{\rm s},$ determine spacing and cover, and revise d
- 8. Check that $\epsilon_t \geq 0.005$ (if not, increase h and reduce $A_s)$
- 9. Design shear reinforcement (stirrups)
- 10. Check deflection, crack control, steel development length

```
University of Michigan, TCAUP
```

Structures II

$$M_u = \frac{(\gamma_{DL} w_{DL} + \gamma_{LL} w_{LL})l^2}{8}$$

$$\rho = \frac{\beta_1 f_c'}{4f_y}$$

$$bd^{2} = \frac{M_{u}}{\varphi \rho f_{y} \left(1 - 0.59 \rho (fy/f_{c}')\right)}$$

$$A_s = \rho b d$$

$$a = \frac{\rho f_{\mathcal{Y}} \, d}{0.85 f_c'}$$

Slide 21 of 21