Reinforced Concrete Beams
Ultimate Strength Design
(ACI 318-14) – PART II

- Rectangular Slab Analysis
- Reinforcement Detailing
- Rectangular Beam Design – Method I

One-way Slab Analysis

Data:
- Section dimensions – b, h, (span)
- Steel area – As, bar diam. bd, o.c. spacing
- Material properties – f’c, fy

Required:
- Nominal Strength (of beam) Moment - Mn
- Required (by load) Design Moment – Mu
- Load capacity

1. Calculate \(d = h - \text{cover} - \frac{\text{bar}}{2} \)
2. Find \(\frac{\text{As}}{\text{ft}} \). Check \(\text{As} \) min
3. Calculate \(a \)
4. Determine \(c \)
5. Check that \(\varepsilon_t \geq 0.005 \) (tension controlled)
6. Find nominal moment, \(Mn \)
7. Calculate required moment, \(\phi Mn \geq Mu \) (if \(\varepsilon_t \geq 0.005 \) then \(\phi = 0.9 \))
8. Determine max. loading (or span)
Slab Analysis

Data:
- Span = 18 ft
- \(h = 11" \)
- take \(b = 12" \)
- Steel #8 @ 18" o.c.
- \(f_c = 3000 \text{ psi} \)
- \(f_y = 60 \text{ ksi} \)

Required:
- Design moment capacity – \(M_u \)
- Maximum LL in PSF

1. Find \(d \)
2. Find \(A_s \)
 Check \(A_s, \min \)
 \[A_g = 12" \times 11" = 132 \text{ in}^2 \]
 \[[0.0018(60)/60] 132 = 0.237 \text{ in}^2 \]
 \[0.0014 (132) = 0.1848 \text{ in}^2 \]
 \[0.527 > 0.237 \text{ ok} \]

3. Find \(a \)
4. Find \(c = \beta_1 \cdot a \)
5. Check failure mode
 \(\varepsilon_t \geq 0.005 \) for tension controlled
6. Find force \(T \)
7. Find moment arm \(z \)
8. Find nominal strength moment, \(M_n \)
9. Find required moment, M_u

10. Find slab DL

11. Determine max. loading

Details of Reinforcement

Size
- Nominal 1/8" increments

Grade
- 40 (40 ksi)
- 60 (60 ksi)
- 75 (75 ksi)
Details of Reinforcement

ACI 318 Chapter 25.2
Placement of Reinforcement

• **Cover** (ACI 20.6.1)
• **Horizontal spacing in beams,** s_h (ACI 25.2.1)
 \[
 \frac{1 \text{ inch}}{\frac{4}{3} d_{agg,\text{max}}}
 \]
• **Vertical spacing in beams** (ACI 25.2.2)
 \[
 \text{Min 1 inch}
 \]

Table 20.6.1.3.1—Specified concrete cover for cast-in-place nonprestressed concrete members

<table>
<thead>
<tr>
<th>Concrete exposure</th>
<th>Member</th>
<th>Reinforcement</th>
<th>Specified cover, in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cast against and permanently in contact with ground</td>
<td>All</td>
<td>All</td>
<td>3</td>
</tr>
<tr>
<td>Exposed to weather or in contact with ground</td>
<td>All</td>
<td>No. 6 through No. 18 bars</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 5 bar, W31 or D31 wire, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>smaller</td>
<td></td>
</tr>
<tr>
<td>Not exposed to weather or in contact with ground</td>
<td>Slabs, joints, and walls</td>
<td>No. 14 and No. 18 bars</td>
<td>1-1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No. 11 bar and smaller</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beams, columns, pedestals, and tension ties</td>
<td>Primary reinforcement, stirrups, ties, spirals, and hoops</td>
<td>1-1/2</td>
</tr>
</tbody>
</table>

Details of Reinforcement

ACI 318 Chapter 25
Placement of Reinforcement

• **Chairs**
• **Bolsters**
Details of Reinforcement

ACI 318 Chapter 25

Minimum bend diameter
- factor \(x d_b \)

Hooks for bars in tension
- ACI Table 25.3.1
- Inside diameter

Bends for stirrups
- ACI Table 25.3.2

Table 25.3.1—Standard hook geometry for development of deformed bars in tension

<table>
<thead>
<tr>
<th>Type of standard hook</th>
<th>Bar size</th>
<th>Minimum inside bend diameter, in.</th>
<th>Straight extension(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-degree hook</td>
<td>No. 3 through No. 9</td>
<td>(6d_b)</td>
<td>(12d_b)</td>
</tr>
<tr>
<td></td>
<td>No. 9 through No. 11</td>
<td>(8d_b)</td>
<td>(16d_b)</td>
</tr>
<tr>
<td></td>
<td>No. 14 and No. 18</td>
<td>(10d_b)</td>
<td>(20d_b)</td>
</tr>
<tr>
<td>180-degree hook</td>
<td>No. 3 through No. 8</td>
<td>(6d_b)</td>
<td>Greater of (4d_b) and 2.5 ft.</td>
</tr>
<tr>
<td></td>
<td>No. 9 through No. 11</td>
<td>(8d_b)</td>
<td>Greater of (6d_b) and 3 ft.</td>
</tr>
<tr>
<td></td>
<td>No. 14 and No. 18</td>
<td>(10d_b)</td>
<td>Greater of (8d_b) and 2.5 ft.</td>
</tr>
</tbody>
</table>

(1) Standard hook for deformed bars in tension includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

Table 25.3.2—Minimum inside bend diameters and standard hook geometry for stirrups, ties, and hoops

<table>
<thead>
<tr>
<th>Type of standard hook</th>
<th>Bar size</th>
<th>Minimum inside bend diameter, in.</th>
<th>Straight extension(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-degree hook</td>
<td>No. 3 through No. 5</td>
<td>(4d_b)</td>
<td>Greater of (6d_b) and 3 ft.</td>
</tr>
<tr>
<td></td>
<td>No. 6 through No. 8</td>
<td>(6d_b)</td>
<td>Greater of (8d_b) and 2.5 ft.</td>
</tr>
<tr>
<td>135-degree hook</td>
<td>No. 3 through No. 5</td>
<td>(4d_b)</td>
<td>Greater of (6d_b) and 3 ft.</td>
</tr>
<tr>
<td></td>
<td>No. 6 through No. 8</td>
<td>(6d_b)</td>
<td>Greater of (8d_b) and 2.5 ft.</td>
</tr>
<tr>
<td>180-degree hook</td>
<td>No. 3 through No. 5</td>
<td>(4d_b)</td>
<td>Greater of (6d_b) and 3 ft.</td>
</tr>
<tr>
<td></td>
<td>No. 6 through No. 8</td>
<td>(6d_b)</td>
<td>Greater of (8d_b) and 2.5 ft.</td>
</tr>
</tbody>
</table>

(1) Standard hook for stirrups, ties, and hoops includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

Table 25.4.2.4—Modification factors for development of deformed bars and deformed wires in tension

<table>
<thead>
<tr>
<th>Modification factor</th>
<th>Condition</th>
<th>Value of factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light weight factor</td>
<td>Lightweight concrete</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Lightweight concrete, where (f_y) is specified</td>
<td>(\text{In accordance with 19.2.4.3})</td>
</tr>
<tr>
<td></td>
<td>Normal weight concrete</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- Epoxy(1)
 - Epoxy-coated or zinc and epoxy dual-coated reinforcement with clear cover less than \(6d_b \), or clear spacing less than \(6d_b \) | 1.5 |
 - Epoxy-coated or zinc and epoxy dual-coated reinforcement for all other conditions | 1.2 |
 - Uncored or zinc-coated (galvanized) reinforcement | 1.0 |

- Size(1)
 - No. 6 and larger bars | 1.0 |
 - No. 6 and smaller bars and deformed wires | 0.8 |

- Casting position(1)
 - More than 12 in. of fresh concrete placed below horizontal reinforcement | 1.3 |
 - Other | 1.0 |

(1) The product \(w_f \), need not exceed 1.7.

Table 25.4.2.2—Development length for deformed bars and deformed wires in tension

<table>
<thead>
<tr>
<th>Spacing and cover</th>
<th>No. 6 and smaller bars and deformed wires</th>
<th>No. 7 and larger bars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear spacing of bars or wires being developed or lap spliced not less than (d_b), clear cover at least (d_b), and slippage on ties throughout (d_b) not less than the Code minimum</td>
<td>(f_{y, c} = \frac{250}{200} f_{y, c}) (d_b)</td>
<td>(f_{y, c} = \frac{3 f_{y, c}}{400} f_{y, c}) (d_b)</td>
</tr>
<tr>
<td>Clear spacing of bars or wires being developed or lap spliced at least (2d_b) and clear cover at least (d_b)</td>
<td>(f_{y, c} = \frac{250}{200} f_{y, c}) (d_b)</td>
<td>(f_{y, c} = \frac{3 f_{y, c}}{400} f_{y, c}) (d_b)</td>
</tr>
<tr>
<td>Other cases</td>
<td>(f_{y, c} = \frac{250}{200} f_{y, c}) (d_b)</td>
<td>(f_{y, c} = \frac{3 f_{y, c}}{400} f_{y, c}) (d_b)</td>
</tr>
</tbody>
</table>
Rectangular Beam Design

Two approaches:

Method 1:

Data:
- Load and Span
- Material properties – f'_{c}, f_y
- All section dimensions: h and b

Required:
- Steel area – A_s

Method 2:

Data:
- Load and Span
- Some section dimensions – h or b
- Material properties – f'_{c}, f_y
- Choose ρ

Required:
- Steel area – A_s
- Beam dimensions – b or h
Rectangular Beam Design – **Method 1**

Data:
- Load and Span
- Material properties – f'_c, f_y
- All section dimensions – b and h

Required:
- Steel area - A_s

1. Calculate the factored load and find factored required moment, $M_{u, \text{req}}$
2. Find $d = h - \text{cover} - \text{stirrup} - \frac{d_b}{2}$
3. Estimate moment arm $z = jd$, for beams $j \approx 0.9$
4. Estimate A_s based on estimate of jd.
5. Use A_s to find a
6. Use a to find A_s (repeat…until 2% accuracy)
7. Choose bars for A_s and check A_s max & min
8. Check that $\varepsilon_t \geq 0.005$
9. Check $M_u \leq \phi M_n$ (final condition)
10. Design shear reinforcement (stirrups)
11. Check deflection, crack control, rebar development length

One-way Slab Design

Method 1

Data:
- Load and Span
- Material properties – f'_c, f_y
- All section dimensions:
 - h (based on deflection limit)
 - $b = \text{typical 12" width}$

Required:
- Steel area – A_s

First estimate the slab thickness, h.

Try first the recommended minimum.

Deeper sections require less steel, but of course more concrete.
One-way Slab Slab Design

1. Calculate the dead load and find required M_u

$$DL = \frac{11''}{12} (150) = 137.5 \text{ psf}$$

$$LL (4\text{" x}\text{4"}) = 230 \text{ psf}$$

$$w_o = 1.2(137.5) + 1.6(230) = 533 \text{ psf} = \rho CF$$

$$M_u = \frac{w_o \cdot h^2}{8} = \frac{533 \text{ psf} (18')^2}{8} = 21587.12$$

$$\phi M_u = 259'' \cdot k$$

2. Find d based on the estimated h and rebar size (guessing #4)

3. Estimate moment arm

$z \approx 0.95 \cdot d$
One-way Slab Slab Design

4. Estimate A_s based on estimate of z

5. Use A_s to find a

6. Use a to find A_s (repeat…)

7. Choose bars for A_s required:
 - either choose bars and calculate spacing
 - choose spacing and find bar size
 If the bar size changes, re-calculate to find new d. Then, re-calculate A_s...

Check $A_{s,min}$
(for slabs $A_{s,min}$ from ACI Table 7.6.1.1)

<table>
<thead>
<tr>
<th>Reinforcement type</th>
<th>f_y, psi</th>
<th>$A_{s,min}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deformed bars</td>
<td>< 60,000</td>
<td>0.002034</td>
</tr>
<tr>
<td>Deformed bars or welded wire reinforcement</td>
<td>≥ 60,000</td>
<td>Greater of: 0.0018×0.6 or $0.0014 \frac{s}{t}$</td>
</tr>
</tbody>
</table>
8. Check that $\varepsilon_t \geq 0.005$

$$\varepsilon_t = \frac{E}{E_{ct}}$$

$$\varepsilon_t = \frac{1176}{1050} = 1.1176$$

$$\varepsilon_t = \frac{1176}{1050} = 1.1384$$

$$\varepsilon_t = \frac{9.5\text{in} - 1.1384\text{in}}{1.1384\text{in}} = 0.003$$

$$\varepsilon_t = 0.01759 > 0.005$$

Tension controlled

9. Check $M_u \leq \phi M_n$
 (final condition)

$$A_s = A_{s,\text{used}}$$

$$M_n = Tz$$

10. Add stirrups (no stirrups in slab)

11. Check deflection, crack control, and rebar development length

$$M_u = 0.16(60)(9.5\text{in} - \frac{1176}{2})$$

$$M_u = 36(8.911\text{in}) = 320.8\text{kip}$$

$$M_u = 0.9(320.8) = 288.7\text{kip}$$

$$M_u = 259\text{kip} < 288.7\text{kip}$$

$M_u < 4M_u$