Architecture 324 Structures II

Reinforced Concrete Beams Ultimate Strength Design (ACI 318-14) – PART II

- Rectangular Beam Design Method I
- Rectangular Beam Design Method II
- "T" Beams
- Reinforcement Detailing

Structures II

Slide 1 of 16

Rectangular Beam Design

Two approaches:

Method 1:

Data:

- Load and Span
- Material properties f_c , f_v
- All section dimensions: h and b

Required:

Steel area – A_s

Method 2:

Data:

- Load and Span
- Some section dimensions h or b
- Material properties f_c , f_y \checkmark
- Choose $\rho = \frac{A_s}{b_d}$

Required:

- Steel area A_s
- Beam dimensions b or h

One-way Slab Design Method 1

Data:

- Load and Span
- Material properties f'_c, f_v
- All section dimensions:
- h (based on deflection limit)
- b = typical 12" width

Required:

Steel area – A_s

First estimate the slab thickness, h.

Try first the recommended minimum.

Deeper sections require less steel, but of course more concrete.

Table 7.3.1.1-Minimum thickness of solid	nonpre-
stressed one-way slabs	

Support condition	Minimum h ^[1]	
Simply supported	ℓ/20	
One end continuous	<i>ℓ</i> /24	
Both ends continuous	<i>ℓ</i> /28	
Cantilever	<i>ℓ</i> /10	1

THICKNESS, h, BASED ON DEFLECTION $h = \frac{1}{20} = \frac{18 \times 12}{20} = 10.8^{"} \text{ USE I}$

One-way Slab Slab Design

- 4. Estimate A_s based on estimate of z
- 5. Use A_s to find a
- 6. Use a to find A_s (repeat...)

University of Michigan, TCAUP

Structures II

Slide 7 of 16

One-way Slab Slab Design

7. Choose bars for A_s required:

either

choose bars and calculate spacing or

choose spacing and find bar size If the bar size changes, re-calculate to find new d. Then, re-calculate A_s...

Check A_{s,min}

(for slabs $A_{s,min}$ from ACI Table 7.6.1.1)

Table 7.6.1.1—A _{s,m}	in for nonprestressed one-way
slabs	
Dic	

Reinforcement type	fy, psi		A _{s,min}
Deformed bars	< 60,000		0.0020Ag
Deformed bars or welded wire reinforcement	≥ 60,000	Greater 7 of:	$\frac{0.0018 \times 60,000}{f_{,}} A_{g}$ 0.0014 A_{g}

$$\frac{0.505}{12''} : \frac{0.24}{5?'} \le = 4.75''$$

$$\therefore \text{ USE } 4'' \text{ o.c.} (always round down)$$

$$A_{5} = 0.60 \text{ m}^{2}/\text{FT} > 0.505$$

$$\begin{array}{l} \text{ALTERNATE FOR } \underbrace{\text{Max. S = 18''}}_{12''} & A_{b} = 0.75 \text{ m}^{2} \\ \underbrace{\frac{0.505}{12''}}_{12''} & \underbrace{\frac{A_{b}^{2}}{18''}}_{18''} & A_{b} = 0.79 \text{ m}^{2} \\ \underbrace{\frac{A_{b}^{2}}{18''}}_{18''} & B = 0.79 \text{ m}^{2} \\ \underbrace{\frac{A_{b}^{2}}{18''}}_{18''} & B = 0.79 \text{ m}^{2} \\ A_{5} = 0.526 \text{ m}^{2}/\text{FT} > 0.505 \text{ m}^{2} \\ \text{Check } \underbrace{As, \min}_{A_{5}} & A_{g} \\ A_{5} \min = 0.0018 \text{ bh}_{a} = 0.0018(12)(11'') \\ = 0.24 \text{ m}^{2} < 0.526 \text{ m}^{2} \text{ m}^{2} \text{ m}^{2} \text{ m}^{2} \text{ m}^{2} \text{ m}^{2} \end{array}$$

One-way Slab Slab Design

Data:

- Load and Span
- Some section dimensions b or h
- Material properties f'_c , f_y

Required:

- Steel area A_s^2
- Beam dimensions <u>b</u> and h
- 1. Estimate the dead load (estimate h and b) (L/8 ≤ h ≤ L/21, h ≈ L/12 and b:h ≈ 1:2 to 2:3), find M_u
- 2. Choose ρ (equation assumes $\varepsilon_{\rm t}$ = 0.0075)
- 3. Calculate bd²
- 4. Choose b and solve for d (or d and solve b)
- 5. Revise h, weight, M_u , and bd^2
- 6. Find $A_s = \rho bd$
- 7. Choose bars for A_s, determine spacing and cover, and revise d
- 8. Check that $\epsilon_t \ge 0.005$ (if not, increase h and reduce A_s)
- 9. Design shear reinforcement (stirrups)
- 10. Check deflection, crack control, steel development length

```
University of Michigan, TCAUP
```

Structures II

 $\dot{b}d^2 =$

Slide 11 of 16

Rectangular Beam Design

Data:

- Load and Span
- Material properties f'_c , f_y –

Required:

- Steel area A_s^{z}
- Beam dimensions b and d

1. Estimate the dead load (self-weight), and find M_u (h \approx L/12 and b:h \approx 1:2 to 2:3)

Table 9.3.1.1—Minimum depth of nonprestressed beams

Support condition	Minimum h ^[1]
Simply supported	ℓ/16
One end continuous	€/18.5
Both ends continuous	€/21
Cantilever	£/8

^[1]Expressions applicable for normalweight concrete and $f_y = 60,000$ psi. For other cases, minimum h shall be modified in accordance with 9.3.1.1.1 through 9.3.1.1.3, as appropriate.

2. Choose ρ (equation assumes $\varepsilon_t = 0.0075$)

 $M_u = \frac{(\gamma_{DL} w_{DL} + \gamma_{LL} w_{LL})l^2}{8}$

 M_u

 $\varphi \rho f_y (1 - 0.59 \underline{\rho} (fy/f_c))$

 $A_s = \rho b d$

a =

Rectangular Beam Design cont.

Rectangular Beam Design

7. Choose bars for A_s, determine spacing and cover, and revise d

CHOOSE BARS (SEE TABLE 4.4) TRY 5 x *9 BARS As = 5.0 m² +*4 STIRRUP $\frac{9''}{1.128''1.122''}$ $\frac{11''}{1.5. dc}$ b = 15''b = 15''

If bars do not fit in one layer, d is measured to the centroid of the pattern.

Rectangular Beam Design

 Choose bars for A_s and determine spacing and cover, recheck h and weight

Make final check of M_n using final d, and check that $M_u \le \phi M_n$

- $d = \frac{33.436''}{\frac{45}{85}f_{c}} = \frac{5(60)}{.85(3)15} = 7.843''$ $H_{n} = A_{s}f_{n} \left(d \frac{24}{2} \right) = 5(60)(33.436 \frac{7.843}{2})$ $M_{n} = \frac{8854}{8554} K i' = 737.8 K i$ $\Phi M_{n} = 0.9(737.8) = 664 K i$ $M_{0} = 653.3 < 664 V oK$
- 8. Check that $\epsilon_t \ge 0.005$ (if not, increase h and reduce A_s)
- 9. Design shear reinforcement (stirrups) 10. Check deflection, crack control, steel
- development length

 $C = \frac{d}{\beta_1} = \frac{7.843''}{0.85} = 9.227''$

 $e_{+} = \frac{d-c}{c} (0.003)$

 ϵ_{i}

6