
## Architecture 324 Structures II

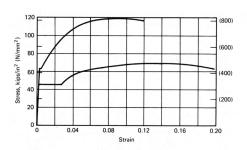
# Reinforced Concrete Beams Ultimate Strength Design (ACI 318-14) – PART III

- Rectangular Beam Design Method 2
- Non-Rectangular Beam Analysis
- Reinforced Concrete Examples
- 3D-Print Evolution (Video)



University of Michigan, TCAUP Structures II Slide 1 of 22

## **Details of Reinforcement**


### Size

• Nominal 1/8" increments

### Grade

- 40 (40 ksi) OLO
- 60 (60 ksi) らての
- 75 (75 ksi) HIZH

|            | Bar size<br>designa-<br>tion | Nominal cross section area, sq. in. | Weight,<br>lb per ft | Nominal<br>diameter,<br>in. |
|------------|------------------------------|-------------------------------------|----------------------|-----------------------------|
|            | #3                           | 0.11                                | 0.376                | 0.375 3/8                   |
| STIP. RUPS | #4                           | 0.20                                | 0.668                | 0.500                       |
|            | #5                           | 0.31                                | 1.043                | 0.625                       |
|            | #6                           | 0.44                                | 1.502                | 0.750                       |
|            | #7                           | 0.60                                | 2.044                | 0.875                       |
|            | #8                           | 0.79                                | 2.670                | 1.000                       |
|            | #9                           | 1.00                                | 3.400                | 1.128 4                     |
|            | #10                          | 1.27                                | 4.303                | 1.270                       |
|            | #11                          | 1.56                                | 5.313                | 1.410                       |
|            | #14                          | 2.25                                | 7.650                | 1.693                       |
|            | #18                          | 4.00                                | 13.600               | 2.257                       |

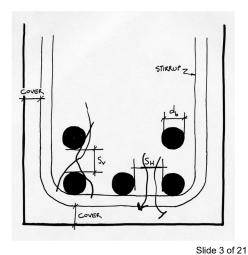


### **Details of Reinforcement**

ACI 318 Chapter 25.2 Placement of Reinforcement

- Cover (ACI 20.6.1)
- Horizontal spacing in beams, s<sub>h</sub> (ACI 25.2.1)
   1 inch ←
   d<sub>b</sub> ✓
   4/3 d<sub>agg,max</sub>
- Vertical spacing in beams (ACI 25.2.2) Min 1 inch

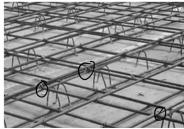



https://www.constructioncost.co/honeycombing-in-concrete.html

University of Michigan, TCAUP

Structures II

# Table 20.6.1.3.1—Specified concrete cover for cast-in-place nonprestressed concrete members

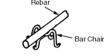

| Concrete exposure                                         | Member                                               | Reinforcement                                                     | Specified cover, in. |
|-----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|----------------------|
| Cast against and<br>permanently in<br>contact with ground | All                                                  | All                                                               | 3                    |
| Exposed to weather                                        |                                                      | No. 6 through No.<br>18 bars                                      | 2                    |
| or in contact with ground                                 | All                                                  | No. 5 bar, W31<br>or D31 wire, and<br>smaller                     | 1-1/2                |
|                                                           | Slabs, joists,                                       | No. 14 and No. 18<br>bars                                         | 1-1/2                |
| Not exposed to                                            | and walls                                            | No. 11 bar and smaller                                            | 3/4 /~               |
| contact with ground                                       | Beams,<br>columns,<br>pedestals, and<br>tension ties | Primary reinforce-<br>ment, stirrups, ties,<br>spirals, and hoops | 1-1/2                |



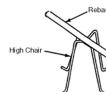
# **Details of Reinforcement**

ACI 318 Chapter 25 Placement of Reinforcement

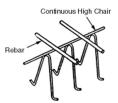
- Chairs
- Bolsters



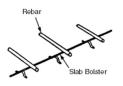

https://catalog.formtechinc.com




http://contractorsupplymagazine.com











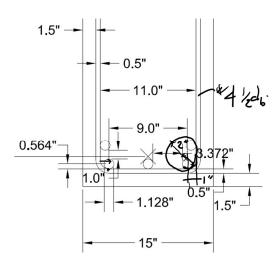





### **Details of Reinforcement**

ACI 318 Chapter 25

#### Minimum bend diameter


factor x d<sub>b</sub>

### Hooks for bars in tension

- ACI Table 25.3.1
- · Inside diameter

### Bends for stirrups

ACI Table 25.3.2



University of Michigan, TCAUP

Table 25.3.1—Standard hook geometry for development of deformed bars in

| Type of<br>standard<br>hook | Bar size                | Minimum inside<br>bend diameter, in. | Straight<br>extension[1]<br>$\ell_{ext}$ in. | Type of standard hook           |  |  |
|-----------------------------|-------------------------|--------------------------------------|----------------------------------------------|---------------------------------|--|--|
| 90-degree<br>hook           | No. 3 through<br>No. 8  | 6 <i>d</i> <sub>b</sub>              |                                              | Point at which bar is developed |  |  |
|                             | No. 9 through<br>No. 11 | 8 <i>d</i> <sub>b</sub>              | 12 <i>d</i> <sub>h</sub>                     | 90-degree bend                  |  |  |
|                             | No. 14 and<br>No. 18    | 10d <sub>b</sub>                     | 1246                                         | Diameter Lext CEV               |  |  |
|                             | No. 3 through<br>No. 8  | 6 <i>d</i> <sub>b</sub>              |                                              | Point at which bar is developed |  |  |
| 180-degree                  | No. 9 through<br>No. 11 | 8 <i>d</i> <sub>b</sub>              | Greater of                                   | d <sub>b</sub>                  |  |  |
| hook                        | No. 14 and<br>No. 18    | 10 <i>d<sub>b</sub></i>              | 4d <sub>b</sub> and 2.5 in.                  | Diameter bend                   |  |  |

<sup>&</sup>lt;sup>11</sup>A standard hook for deformed bars in tension includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

Table 25.3.2—Minimum inside bend diameters and standard hook geometry for stirrups, ties, and hoops

| Type of stan-<br>dard hook | Bar size                  | Minimum inside<br>bend diameter, in. | Straight extension <sup>[1]</sup> $\ell_{ext}$ , in. | Type of standard hook                        |  |  |
|----------------------------|---------------------------|--------------------------------------|------------------------------------------------------|----------------------------------------------|--|--|
| 90-degree                  | No. 3<br>through<br>No. 5 | 4d <sub>b</sub>                      | Greater of $6d_b$ and 3 in.                          | 90-degree                                    |  |  |
| hook                       | No. 6<br>through<br>No. 8 | 6d <sub>b</sub>                      | 12 <i>d</i> <sub>b</sub>                             | Diameter \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |  |  |
| 135-degree<br>hook         | No. 3<br>through<br>No. 5 | 4d <sub>b</sub>                      | Greater of $6d_b$ and                                | 135-degree                                   |  |  |
|                            | No. 6<br>through<br>No. 8 | 6 <i>d</i> <sub>b</sub>              | 3 in.                                                | Diameter                                     |  |  |
| 180-degree                 | No. 3<br>through<br>No. 5 | $4d_b$                               | Greater of                                           | d <sub>b</sub> -                             |  |  |
| hook                       | No. 6<br>through<br>No. 8 | $6d_b$                               | 4d <sub>b</sub> and 2.5 in.                          | Diameter bend                                |  |  |

<sup>17]</sup>A standard hook for stirrups, ties, and hoops includes the specific inside bend diameter and straight extension length. It shall be permitted to use a longer straight extension at the end of a hook. A longer extension shall not be considered to increase the anchorage capacity of the hook.

Structures II

Slide 5 of 21

## **Details of Reinforcement**

ACI 318 Chapter 25

## Development length of bars

- 12" min
- Based on table 25.4.2.2

Table 25.4.2.4—Modification factors for development of deformed bars and deformed wires in tension

| Modification factor                | Condition                                                                                                                    | Value of factor             |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                                    | Lightweight concrete                                                                                                         | 0.75                        |
| Lightweight $\lambda$              | Lightweight concrete, where $f_{ct}$ is specified                                                                            | In accordance with 19.2.4.3 |
| _                                  | Normalweight concrete                                                                                                        | 1.0                         |
| r (II                              | Epoxy-coated or zinc and epoxy dual-coated reinforcement with clear cover less than $3d_b$ or clear spacing less than $6d_b$ | 1.5                         |
| Epoxy <sup>[1]</sup> $\psi_e$      | Epoxy-coated or zinc and epoxy dual-<br>coated reinforcement for all other<br>conditions                                     | 1.2                         |
|                                    | Uncoated or zinc-coated (galvanized) reinforcement                                                                           | 1.0                         |
| Size                               | No. 7 and larger bars                                                                                                        | 1.0                         |
| $\psi_s$                           | No. 6 and smaller bars and deformed wires                                                                                    | 0.8                         |
| Casting<br>position <sup>[1]</sup> | More than 12 in. of fresh con-<br>crete placed below horizontal<br>reinforcement                                             | 1.3                         |
| $\frac{\Psi_t}{}$                  | Other                                                                                                                        | 1.0                         |

The product  $\psi_i \psi_e$  need not exceed 1.7.

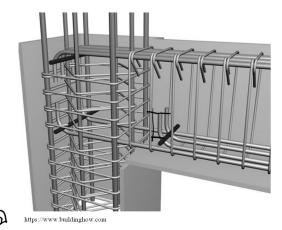



Table 25.4.2.2—Development length for deformed bars and deformed wires in tension

| Spacing and cover                                                                                                                                                                                                                                                                                        | No. <u>6</u> and<br>smaller bars and<br>deformed wires                                                       | No. 7 and larger bars                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Clear spacing of bars or wires being developed or lap spliced not less than $d_b$ , clear cover at least $d_b$ , and stirrups or ties throughout $\ell_d$ not less than the Code minimum or Clear spacing of bars or wires being developed or lap spliced at least $2d_b$ and clear cover at least $d_b$ | $\underbrace{\left(\frac{f_{y}\Psi_{t}\Psi_{e}}{2! \cancel{\bigcirc} Jf_{c}^{\prime}}\right)}_{d_{b}} d_{b}$ | $\left(rac{f_{y}\psi_{i}\psi_{e}}{20\lambda\sqrt{f_{c}'}} ight)d_{b}$ |
| Other cases                                                                                                                                                                                                                                                                                              | $\left(\frac{3f_{y}\psi_{t}\psi_{\epsilon}}{50\lambda\sqrt{f_{c}'}}\right)d_{b}$                             | $\left(\frac{3f_y\psi_t\psi_e}{40\lambda\sqrt{f_c'}}\right)d_b$        |

# Other Useful Tables:

Table A.2 Designations, Areas, Perimeters, and Weights of Standard Bars

| Table A.1 | Values of Modulus of Elasticity for |
|-----------|-------------------------------------|
|           | Normal-Weight Concrete              |

| Custo                  | mary Units             | SI Units  |                      |  |  |
|------------------------|------------------------|-----------|----------------------|--|--|
| f <sub>c</sub> ' (psi) | E <sub>c</sub> / (psi) | fc' (MPa) | E <sub>c</sub> (MPa) |  |  |
| 3,000                  | 3,140,000              | 20.7      | 21 650               |  |  |
| 3,500                  | 3,390,000              | 24.1      | 23 373               |  |  |
| 4,000                  | 3,620,000              | 27.6      | 24 959               |  |  |
| 4,500                  | 3,850,000              | 31.0      | 26 545               |  |  |
| 5,000                  | 4,050,000              | 34.5      | 27 924               |  |  |

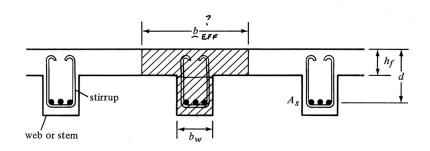
|            | C                 | ustomary Uni                       | ts                        | SI Units      |                                   |                          |  |  |
|------------|-------------------|------------------------------------|---------------------------|---------------|-----------------------------------|--------------------------|--|--|
| Bar<br>No. | Diameter<br>(in.) | Cross-<br>sectional<br>Area (in.²) | Unit<br>Weight<br>(lb/ft) | Diameter (mm) | Cross-<br>sectional<br>Area (mm²) | Unit<br>Weight<br>(kg/m) |  |  |
| 3          | 0.375             | 0.11                               | 0.376                     | 9.52          | 71                                | 0.560                    |  |  |
| 4          | 0.500             | 0.20                               | 0.668                     | 12.70         | 129                               | 0.994                    |  |  |
| 5          | 0.625             | 0.31                               | 1.043                     | 15.88         | 200                               | 1.552                    |  |  |
| 6          | 0.750             | 0.44                               | 1.502                     | 19.05         | 284                               | 2.235                    |  |  |
| 7          | 0.875             | 0.60                               | 2.044                     | 22.22         | 387                               | 3.042                    |  |  |
| 8          | 1.000             | 0.79                               | 2.670                     | 25.40         | 510                               | 3.973                    |  |  |
| 9          | 1.128             | 1.00                               | 3.400                     | 28.65         | 645                               | 5.060                    |  |  |
| 10         | 1.270             | 1.27                               | 4.303                     | 32.26         | 819                               | 6.404                    |  |  |
| 11         | 1.410             | 1.56                               | 5.313                     | 35.81         | 1006                              | 7.907                    |  |  |
| 14         | 1.693             | 2.25                               | 7.650                     | 43.00         | 1452                              | 11.384                   |  |  |
| 18         | 2.257             | 4.00                               | 13.600                    | 57.33         | 2581                              | 20.238                   |  |  |

Jack C McCormac, 1978, Design of Reinforced Concrete,

Table A.4 Areas of Groups of StandardBars (in.²)

|            | Number of Bars |       |       |       |       |       |       |       |       |       |       |       |      |
|------------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| Bar No.    | 2              | 3     | 4     | 3     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 1,4  |
| 4          | 0.39           | 0.58  | 0.78  | 0.98  | 1.18  | 1.37  | 1.57  | 1.77  | 1.96  | 2.16  | 2.36  | 2.55  | 2.7  |
| 5          | 0.61           | 0.91  | 1.23  | 1.53  | 1.84  | 2.15  | 2.45  | 2.76  | 3.07  | 3.37  | 3.68  | 3.99  | 4.30 |
| 6          | 0.88           | 1.32  | 1.77  | 2.21  | 2.65  | 3.09  | 3.53  | 3.98  | 4.42  | 4.86  | 5.30  | 5.74  | 6.19 |
| 7          | 1.20           | 1.80  | 2.41  | 3.01  | 3.61  | 4.21  | 4.81  | 5.41  | 6.01  | 6.61  | 7.22  | 7.82  | 8.4  |
| 8          | 1.57           | 2.35  | 3.14  | 3.93  | 4.71  | 5.50  | 6.28  | 7.07  | 7.85  | 8.64  | 9.43  | 10.21 | 11.0 |
| <b>(3)</b> | 2.00           | 3.00  | 4.00  | 5.00  | 6.00  | 7.00  | 8.00  | 9.00  | 10.00 | 11.00 | 12.00 | 13.00 | 14.0 |
| 10         | 2.53           | 3.79  | 5.06  | 6.33  | 7.59  | 8.86  | 10.12 | 11.39 | 12.66 | 13.92 | 15.19 | 16.45 | 17.7 |
| 11         | 3.12           | 4.68  | 6.25  | 7.81  | 9.37  | 10.94 | 12.50 | 14.06 | 15.62 | 17.19 | 18.75 | 20.31 | 21.8 |
| 14         | 4.50           | 6.75  | 9.00  | 11.25 | 13.50 | 15.75 | 18.00 | 20.25 | 22.50 | 24.75 | 27.00 | 29.25 | 31.5 |
| 18         | 8.00           | 12.00 | 16.00 | 20.00 | 24.00 | 28.00 | 32.00 | 36.00 | 40.00 | 44.00 | 48.00 | 52.00 | 56.0 |

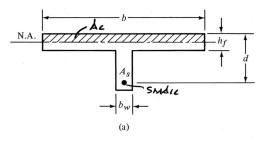
University of Michigan, TCAUP

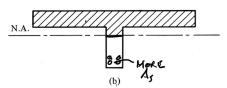

Structures II

Slide 7 of 21

## T Beams

**Dimensional limits** 


Nomenclature




Possible locations of the N.A.:

Within flange – rectangular

Within stem – non-rectangular

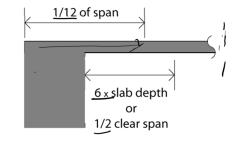


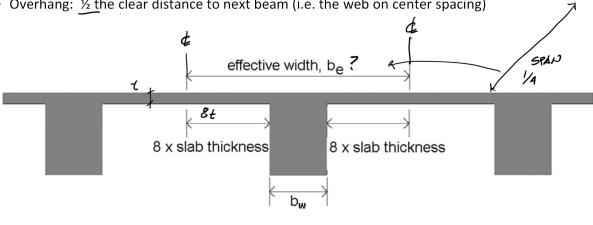


# T Beams - Effective Flange Width, be

### Slab on one side:


be least of either (total width) or (overhang + stem)


- Total width: 1/12 of the beam span
- Overhang: 6 x slab thickness
- Overhang: ½ the clear distance to next beam


### Slab on both sides:

b<sub>e</sub> least of either (total width) or (2 x overhang + stem)

- Total width: ¼ of the beam span
- Overhang: 8 x slab thickness



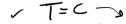




Structures II

# Non-Rectangular Beam Analysis

### Data:

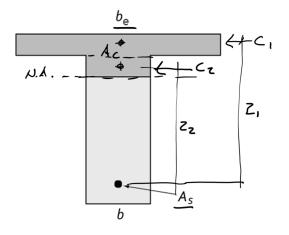

- Section dimensions b, b<sub>e</sub>, h, (span)
- Steel area A<sub>s</sub>

University of Michigan, TCAUP

Material properties – f'<sub>c</sub>, f<sub>v</sub>

#### Required:

Required Moment – M<sub>II</sub> (or load, or span)




- 1. Find T =  $A_s f_y$  and C =  $0.85 f_c A_c$
- 2. Set T = C and solve for A = T/(0.85 f'c)
- 3. Draw and label diagrams for section and stress
  - 1. Determine b effective (for T-beams)
  - 2. Locate T and C (or C<sub>1</sub> and C<sub>2</sub>)
- 4. Determine the location of a

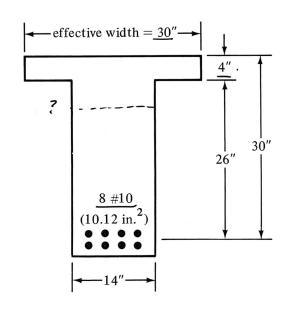
Working from the top down,

add up area to make A<sub>c</sub>

- 5. Find the moment arms (z) for each block of area
- 6. Find  $M_n = \sum C_i z_i v$
- 7. Find  $M_u = \phi M_n \checkmark$
- 8. Check  $A_{s,min} < \underline{A_s} < A_{s,max}$
- 9. Check that  $\varepsilon_t \ge 0.005$  Thus,  $\omega$



Slide 9 of 22


# T Beam Analysis

Given:  $f'_c = 3000 \text{ psi}$ 

 $f_v = 50 \text{ ksi}$ 

dimensions. Use  $b_{eff} = 30$ "

Req'd: Moment capacity, Mu

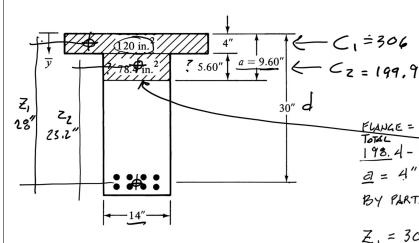


$$T = C$$

1. Find T = 
$$A_s f_y$$
 and C = 0.85 $f_c A_c$ 

2. Set  $\underline{T} = C$  and solve for  $A_c = T/(0.85 \text{ f'c})$ 

$$T = A_5 f_y = 10.12 in^2 50^{KS1} = 500^{K}$$


$$A_c = \frac{T}{0.85 f_c} = \frac{506^{K}}{0.85 3^{KS1}} = \frac{198.4 in^2}{198.4 in^2}$$

University of Michigan, TCAUP

Structures II

Slide 11 of 22

# T Beam Analysis (cont.)

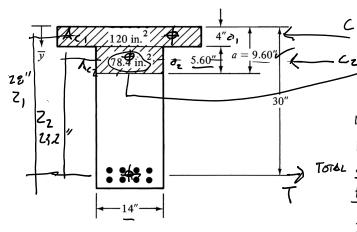


FLANGE = 30"×4" = 120 < 198.4 : NA IN WEB TOTAL 198.4-120 = 78.4 m² = 14" × 5.60" = 4" + 5.60" = 9.60" BY PARTS (FOR EACH AREA)

$$Z_1 = 30'' - 4''/2 = 28''$$
 Moment bens  
 $Z_2 = 30'' - 4'' - 5.6/2'' = 23.2''$ 

3. Draw and label diagrams for section & stress 
$$Z_2 = 30'' - 4 - 5.6/z'' = 2$$
  
1. Determine b effective (for T-beams)

- 2. Locate T and C (or C<sub>1</sub> and C<sub>2</sub>)
  4. Determine the location of a
  Working from the top down,
  add up area to make A<sub>c</sub>
- 5. Find the moment arms (z) for each block of area
- 6. Find  $M_n = \sum C_i z_i$
- 7. Find  $M_u = \phi M_n$


$$\frac{C_1 = A_{C_1} 0.85 f_C}{C_2 = A_{C_2} 0.85 f_C} = 120(0.85)(3) = 306^{K}$$

$$\frac{C_2 = A_{C_2} 0.85 f_C}{C_2 = A_{C_2} 0.85 f_C} = 78.4(0.85)(3) = 199.9^{K}$$

$$\frac{M_n = \sum C_{1Z_1} = 306(28) + 199.9(23.2)}{8568 + 4638 = 13206^{K-1N}}$$

$$\frac{M_0 = \Phi M_n = 0.9(1101) = 991^{K-FT}}{2000}$$

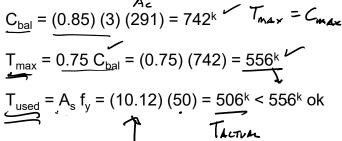
# T Beam Analysis (cont.)

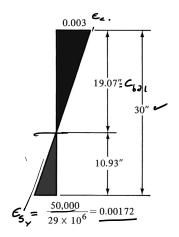


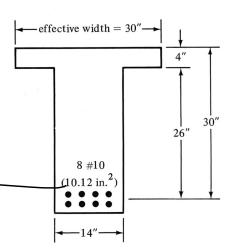
- FLANCE = 30"×4" = 120 < 198.4 : NA IN WERL AC 198.4-120 = 78.4 in² = 14"×5.60" TOTAL a = 4" + 5.60" = 9.60" BY PARTS (FOR EACH AREA)
  - $\frac{Z_{1}}{Z_{2}} = 30'' 4''_{2} = 28''$   $\frac{Z_{2}}{Z_{2}} = 30'' 4'' 5.6/z'' = 23.2''$   $\frac{A_{c_{1}}}{A_{c_{1}}} = \frac{A_{c_{1}}}{A_{c_{1}}} = \frac{$
  - $M_{\text{N}} = \sum_{i=1}^{N} (23.2) = \frac{306(28) + 199.9(23.2)}{8568 + 4638 = 13206} = \frac{13206}{101} = \frac{101}{101} = \frac{$

 $ho_{\mathsf{bal}}$ 

- 3. Draw and label diagrams for section & stress
  - 1. Determine b effective (for T-beams)
  - 2. Locate T and C (or C<sub>1</sub> and C<sub>2</sub>)
- Determine the location of a Working from the top down, add up area to make A<sub>c</sub>
- 5. Find the moment arms (z) for each block of area
- 6. Find  $M_n = \sum C_i z_i$
- 7. Find  $M_u = \phi M_n$

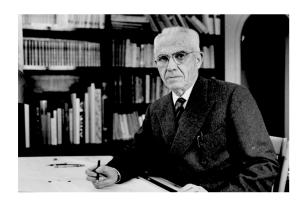

University of Michigan, TCAUP

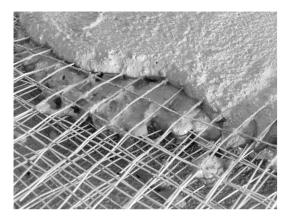

Structures II

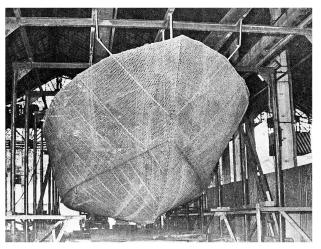

Slide 13 of 22

# T Beam Analysis (cont.)

 $\frac{\rho_{\text{max}}}{a_{\text{bal}}} = 0.75 \, \rho_{\text{bal}}$   $\frac{a_{\text{bal}}}{a_{\text{bal}}} = \text{beta } c_{\text{bal}} = 0.85 \, (19.07") = 16.21" \, 4 + 12.21 = 16.21"$   $\frac{Ac_{\text{bal}}}{Ac_{\text{bal}}} = (4") \, (30") + (12.21") \, (14") = 291 \, \text{in}^2$   $\frac{Ac_{\text{bal}}}{Ac_{\text{bal}}} = (0.85) \, (3) \, (291) = 742^{k}$   $T_{\text{max}} = C_{\text{max}} = .75 \, C_{\text{bal}}$ 




## Ferrocement

- Pioneered by Pier Luigi Nervi
- Dense, small gage reinforcement
- More flexible shapes no formwork
- Well suited for thin shells
- · Less cracking







University of Michigan, TCAUP Structures II Slide 15 of 22

## Ferrocement

- Pioneered by Nervi
- Dense, small gage reinforcement
- More flexible shapes no formwork
- · Well suited for thin shells
- Less cracking
- Low-tech applications

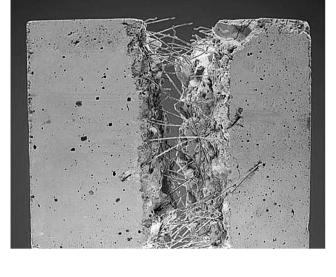


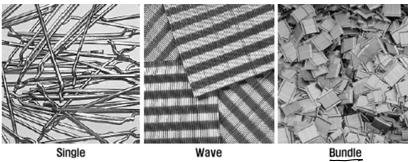
Priory Benedictine Church, Missouri, 1956. Architect Gyo Obata





Palazetto dello Sport, Rome, 1957. P.L. Nervi


# Fiber Reinforced Concrete


Several different fiber types:

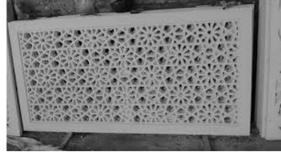
- Steel (SFRC)
- Glass (GFRC)
- Plastic e.g. polypropylene
- Carbon
- Organic e.g. bamboo

Better crack control Secondary reinforcement








University of Michigan, TCAUP Structures II Slide 17 of 22

# Glass Fiber Reinforced Concrete - GFRC





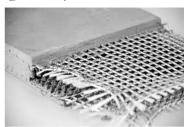




# Carbon Fiber /






## Bamboo





University of Michigan, TCAUP Structures II Slide 19 of 22

# Textile Reinforced Concrete (TRC)



SPACILE



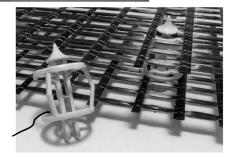


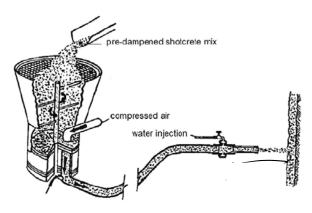

Figure 12: distTEX: special spacers for textile grids [photo: Frank Schladitz, TU Dresden]



Figure 13: Manufacturing of the TRC hypar-shell layer by layer by shotcrete [photo: © RWTH Aachen], [38]



Figure 10: Demolding of a hardened shell element in the concrete yard in Kahla/Saxony [photo: Daniel Ehlig, TU Dresden]


# **Shotcrete**

- Pneumatically applied
- High velocity
- Can include fiber
- Applied to backing
- · Reinforced with bars
- Soil stabilization, tunnels





V6105



University of Michigan, TCAUP Structures II Slide 21 of 22

# 3D-Print Evolution



x = independently organized TED event

THANK YOU

Platinum Partner



Gold Partner











THEPOWEROFTEN

https://www.youtube.com/watch?v=awpmJriWcEw