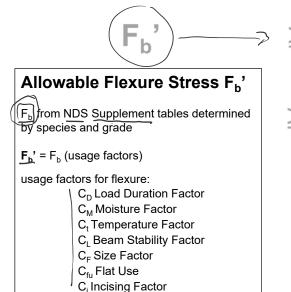
Architecture 324 Structures II


Wood Beam Analysis

- · ASD approach
- · NDS criteria
- Wood Beam Analysis

University of Michigan, TCAUP Structures II Slide 1 of 27

Allowable Stress Design by NDS **Flexure**

C_r Repetitive Member Factor

Actual Flexure Stress f_b $f_b = \frac{Mc/I}{s} = \frac{M/S}{s}$ $S = \frac{I}{c} = \frac{bd^2}{6}$

NDS Table 4.3.1

Allowable Stress Design by NDS **Shear**

 F_{v}

>

 f_{v}

Allowable Shear Stress Fv'

F_v from tables determined by species and grade

 $\mathbf{F_v}' = \mathbf{F_v}$ (usage factors)

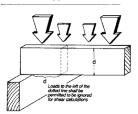
usage factors for shear:

 $C_{\text{\scriptsize D}}$ Load Duration Factor

C_M Moisture Factor

C_t Temperature Factor

C_i Incising Factor


NDS Table 4.3.1

Actual Shear Stress fv

 $f_v = VQ / Ib = 1.5 V/A$

Can use V at d from support as maximum

University of Michigan, TCAUP

Wood Structures

Slide 3 of 27

Allowable Stresses

From the NDS Supplement

DESIGN VALUES FOR WOOD CONSTRUCTION - NDS SUPPLEMENT

35

Table 4A (Cont.)

Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick)^{1,2,3}

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

1					Design va	alues in pounds p	er square inch (p	osi)		DL	
	Species and commercial grade	Size classification	Bending	Tension parallel to grain	parallel parallel	Compression perpendicular to grain	Compression parallel to grain	Modulus of Elasticity		Specific Gravity ⁴	Grading Rules Agency
J			(F _b)	F _t	F,	F₀⊥	F _o	E	E _{min}	(G)	
(1	HEM-FIR							_			
	Select Structural No. 1 & Btr No. 1 No. 2 No. 3	2" & wider	1,400 1,100 975 850 500	925 725 625 525 300	150 150 150 150 150	405 405 405 405 405	1,500 1,350 1,350 1,300 725	1,600,000 1,500,000 1,500,000 1,300,000 1,200,000	580,000 550,000 550,000 470,000 440,000	0.43	WCLIB WWPA
	Stud Construction -	2" & wider	675 975	400 600	150 150	405 405	800 1,550	1,200,000 1,300,000	440,000 470,000		- VVVVFA
	Standard	2" - 4" wide	550 250	325 150	150 150	405 405	1,300 850	1,200,000 1,100,000	440,000 400,000		

Table 4.3.1 – Applicability of Adjustment Factors for Sawn Lumber

		ASD only				AS	SD and	d LRI	FD				LRFD only		
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b' = F_b$	x	C _D	C _M	C _t	C _L	Съ	Cfu	Ci			Bu	_	K _F	φ 0.85	λ
$F_t' = F_t$	x	C _D		Ct		C _F		C _i	-	-	-	-		0.80	λ
$\mathbf{F_v}' = \mathbf{F_v}$	х	C _D	C _M	C_t	-	· <u>-</u> ·	-	Ci	-	- 1	-	-	2.88	0.75	λ
$F_c' = F_c$	x	C _D	C_{M}	Ct	-	C_{F}	-	C_{i}	-	C_P	-	-	2.40	0.90	λ
$F_{c\perp}' = F_{c\perp}$	x	1	C_{M}	C_{t}	-	-	-	C_{i}	-	-	-	C_{b}	1.67	0.90	-
$E_{\cdot} = E$	x	-	C_{M}	C_t	-	-	Cfi	C_{i}	-	-	-	-	-	-	_
$E_{\min}' = E_{\min}$	x	-	C_{M}	C_t	-	-	C_{fu}^{1}	Ci	-	-	C_{T}	-	1.76	0.85	-

Where sawn lumber of Beam and Stringer grades is subject to loads causing <u>flatwise</u> bending or buckling, reference modulus of elasticity (E or E_{min}) shall be multiplied by the flat use factor, C_{fu}, specified in <u>Table 4D</u> of the NDS Supplement; otherwise, C_{fu} = 1.0.

University of Michigan, TCAUP

Structures II

Slide 5 of 27

Adjustment Factors

Allowable Flexure Stress F_b'

 F_b from tables determined by species and grade

$$F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$$

Usage factors for flexure: **C**_D Load Duration Factor

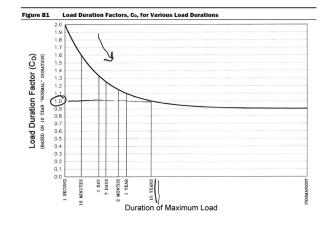


Table 2.3.2 Frequently Used Load Duration Factors, C_p¹

Load Duration	C_D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6 —	Wind/Earthquake Load
Impact ²	2.0	Impact Load

(1) Actual stress due to (DL) \leq (0.9) (Design value) (2) Actual stress due to (DL+LL) $\leq (1.0)$ (Design value) (3) Actual stress due to (DL+WL) \leq (1.6) (Design value) (4) Actual stress due to (DL+LL+SL) ≤ (1.15) (Design value) (5) Actual stress due to (DL+LL+WL) \leq (1.6) (Design value) (6) Actual stress due to (DL+SL+WL) \leq (1.6) (Design value) (7) Actual stress due to (DL+LL+SL+WL) \leq (1.6) (Design value)

University of Michigan, TCAUP Structures II Slide 6 of 27

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

 $F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$

Usage factors for flexure:

Ct Temperature Factor

2.3.3 Temperature Factor, Ct

Reference design values shall be multiplied by the temperature factors, C_t , in Table 2.3.3 for structural members that will experience sustained exposure to elevated temperatures up to 150°F (see Appendix C).

Table 2.3.3 Temperature Factor, Ct											
Reference Design Values	In-Service Moisture	4		Ct		_					
varues	Conditions ¹	T≤100	°F	100°F <u><t≤125°< u="">F</t≤125°<></u>	125°F <t<u>≤150°</t<u>	F					
F _t , E, E _{min}	Wet or Dry	1.0		0.9	0.9 (_					
E E E1E	Dry	1.0		0.8	0.7						
F_b , F_v , F_c , and $F_{c\perp}$	Wet	1.0		0.7	(0.5)	_					

Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.

University of Michigan, TCAUP

Structures II

Slide 7 of 27

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from NDS tables

$$F_b' = F_b (C_D C_M C_t C_L C_E C_{fu} C_i C_r)$$

Usage factors for flexure:

C_M Moisture Factor (Supplement)

C_F Size Factor (Supplement)

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

	Wet Service Factors, C _M												
F_b	F_{t}	$F_{\rm v}$	$F_{\rm c\perp}$	F_{c}	\boldsymbol{E} and \boldsymbol{E}_{min}								
<u>-0.85</u> ®	1.0	0.97	0.67	0.8**	0.9								
* when (F _b)													
** when (F _c	$(C_F) \le 750$	$psi, C_M = 1.0$)										

2×10

DIM.		Size Factors,	$C_{\rm F}$		
		F	b	F _t	F _c
	•	Thickness	(breadth)		
Grades	Width (depth)	Q"\& 3"	4"		
	3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr.	8"	1.2	1.3	1.2	1.05
No.1,(No.2,)	(10")	(1.1)	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated design	values and size facto	ors
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4		0.4	0.6

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from NDS tables

 $F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$

Usage factors for flexure:

C_{fu} Flat Use (Supplement)

C_r Repetitive Member Factor (Supplement)

Flat Use Factor, C_{fu}

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_b, shall also be permitted to be multiplied by the following flat use factors:

Flat Use Factors, C_{fu}

Width	Thickness (breadth)					
(depth)	(2")& 3"	4"				
2" & 3"	1.0	_				
4"	1.1	1.0				
5"	1.1	1.05				
6"	1.15	1.05				
8"	1.15	1.05				
10" & wider	(1.2)	1.1				

Repetitive Member Factor, C_r

Bending design values, \underline{F}_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $\underline{C}_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more that 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

University of Michigan, TCAUP

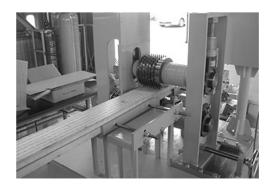
Structures II

Slide 9 of 27

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade


 $F_b' = F_b (C_D C_M C_t C_L C_F C_{fu} C_i C_r)$

Usage factors for flexure: C_i Incising Factor

Table 4.3.8 Incising Factors, C,

Design Value	Ci	
E, E _{min}	0.95	
F_b, F_t, F_c, F_v	0.80	
$F_{c\perp}$	1.00	

Adjustment Factors

Allowable Flexure Stress F_b'

F_b from tables determined by species and grade

$$\mathbf{F}_{\mathrm{b}}' = \mathbf{F}_{\mathrm{b}} \left(\mathbf{C}_{\mathrm{D}} \; \mathbf{C}_{\mathrm{M}} \; \mathbf{C}_{\mathrm{t}} \; \underline{\mathbf{C}_{\mathrm{L}}} \; \mathbf{C}_{\mathrm{F}} \; \mathbf{C}_{\mathrm{fu}} \; \mathbf{C}_{\mathrm{i}} \; \mathbf{C}_{\mathrm{r}} \right)$$

Usage factors for flexure:

C_L Beam Stability Factor

1.0

3.3.3 Beam Stability Factor, C.

3.3.3.1 When the depth of a bending member does not exceed its breadth, $\underline{d \leq b}$, no lateral support is required and $C_L = \underline{1.0}$.

3.3.3.2 When rectangular sawn lumber bending members are laterally supported in accordance with 4.4.1, $C_L = 1.0$.

3.3.3.3 When the compression edge of a bending member is supported throughout its length to prevent lateral displacement, and the ends at points of bearing have lateral support to prevent rotation, $C_L = 1.0$.

2012 NDS

University of Michigan, TCAUP

Structures II

Slide 11 of 27

Slide 12 of 27

4.4.1 Stability of Bending

2x4 (a) $d/b \le 2$; no lateral support shall be required. 2x6-8 (b) $2 < d/b \le 4$, the ends shall be held in position,

bers, or other acceptable means.

2x10 (c) $4 < d/b \le 5$; the compression edge of the mem-

rotation and/or lateral displacement. 2x12 (d) $5 < d/b \le 6$; bridging, full_depth solid blocking

as by full depth solid blocking, bridging, hangers, nailing, or bolting to other framing mem-

ber shall be held in line for its entire length to prevent lateral displacement, as by adequate sheathing or subflooring, and ends at point of bearing shall be held in position to prevent

or diagonal cross bracing shall be installed at

intervals not exceeding 8 feet, the compression edge of the member shall be held in line as by

adequate sheathing or subflooring, and the ends

at points of bearing shall be held in position to

held in line for their entire length and ends at

points of bearing shall be held in position to

prevent rotation and/or lateral displacement.

prevent rotation and/or lateral displacement.

2x14 (e) $6 < d/b \le 7$; both edges of the member shall be

Members

C_L

 $C_1 = 1.0$

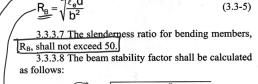
when bracing meets 4.4.1 for the depth/width ratio

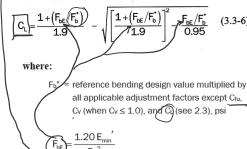
Otherwise

C_L < 1.0 calculate factor using section 3.3.3

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2 to 1	None	
^{3 to 1} 2x6 2x8	The ends of the beam should be held in position	SIND BLOCKING TOIST OF BEAM
5 to 1 2x10	Hold compression edge in line (continuously)	JAINIG SHEATHING/DECKING
6 to 1 2x12	Diagonal bridging should be used	SHEATHING/ DBOWING
7 to 1 2x14	Both edges of the beam should be held in line	PRIPATING NALISD SHEATHING OR PROPHING TO PERTUN

University of Michigan, TCAUP Structures II


C_L Beam Stability Factor


In the case bracing provisions of 4.4.1 cannot be met, C_L is calculated using equation 3.3-6

The maximum allowable slenderness, $R_{\textrm{B}}$ is 50

Cantilever ¹	when $\ell_u/d < 7$		when $\ell_u/d \ge 7$
Uniformly distributed load	ℓ _e =1.33 ℓ _u	Ф.:-	$\ell_e = 0.90 \ \ell_u + 3d$
Concentrated load at unsupported end	$\ell_{\rm e}$ =1.87 $\ell_{\rm u}$		$\ell_{\rm e}$ =1.44 $\ell_{\rm u}$ + 3d
Single Span Beam ^{1,2}	when $\ell_u/d < 7$		when $\ell_u/d \ge 7$
Uniformly distributed load	$\ell_{\rm e}$ =2.06 $\ell_{\rm u}$. Description	$\ell_{\rm e}$ =1.63 $\ell_{\rm u}$ + 3d
Concentrated load at center with no inter- mediate lateral support	ℓ _e =1.80 ℓ _u	1 19	ℓ_e =1.37 ℓ_u + 3d
Concentrated load at center with lateral support at center		€=1.1(ℓ _u)	7
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points		$\ell_{\rm e}$ =1.68 $\ell_{\rm u}$	* .
Three equal concentrated loads at 1/4 points with lateral support at 1/4 points		$\ell_{\rm e}$ =1.54 $\ell_{\rm u}$	×
Four equal concentrated loads at 1/5 points with lateral support at 1/5 points		ℓ _e =1.68 ℓ _u	
Five equal concentrated loads at 1/6 points with lateral support at 1/6 points		$\ell_{\rm e}$ =1.73 $\ell_{\rm u}$	
Six equal concentrated loads at 1/7 points with lateral support at 1/7 points		$\ell_{\rm e}$ =1.78 $\ell_{\rm u}$	
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application	2	$\ell_{\rm e}$ =1.84 $\ell_{\rm u}$	144
Equal end moments		ℓ _e =1.84 ℓ _n	7 10 10 10 10 10 10 10 10 10 10 10 10 10

3.3.3.6 The slenderness ratio, R_B, for bending members shall be calculated as follows:

University of Michigan, TCAUP

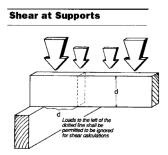
Structures II

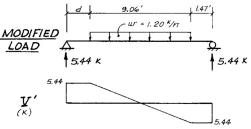
Slide 13 of 27

Adjustment Factors for Shear

Allowable Flexure Stress F,'

F_v from tables determined by species and grade


 $F_v' = F_v$ (usage factors)


Usage factors for shear:

C_D Load Duration Factor

 C_{M} Moisture Factor < C_{t} Temperature Factor <

Incising Factor -

Modified shear V' used to compute reduced shear f'_v

Analysis Procedure

Given: loading, member size, material and span.

Req'd: Safe or Unsafe (Pass/Fail)

- 1. Find Max Shear & Moment
 - Simple case equations
 - Complex case diagrams
- 2. Determine actual stresses
 - f_b = M/S
 - · f_v = 1.5 V/A RICT.
- 3. Determine allowable stresses
 - (F_b) and F_v (from NDS)
 - F_b' = F_b (usage factors)
 - $F_v' = F_v$ (usage factors)
- 4. Check that actual ≤ factored allowable
 - $f_b \le F'_b$
 - f_v ≤ F'_v
- 5. Check deflection < building code max.
- 6. Check bearing (F_{c⊥} ≥ Reaction/A_{bearing})

from NDS 2012

Standard

Dressed

Size (S4S)

b x d

in. x in

3/4 x 2-1/2

3/4 x 3-1/2

3/4 x 5-1/2

3/4 x 7-1/4

3/4 x 9-1/4

3/4 x 11-1/4

Dimension Lumber (see NDS 4.1.3.2

1-1/2 x 2-1/2

1-1/2 x 3-1/2

1-1/2 x 4-1/2

1-1/2 x 5-1/2

1-1/2 x 7-1/4

1-1/2 x 9-1/4

1-1/2 x 11-1/4

1-1/2 x 13-1/4

2-1/2 x 3-1/2

2-1/2 x 4-1/2

2-1/2 x 5-1/2

2-1/2 x 7-1/4

2-1/2 x 9-1/4

2-1/2 x 11-1/4

2-1/2 x 13-1/4

3-1/2 x 3-1/2

3-1/2 x 4-1/2

3-1/2 x 5-1/2

3-1/2 x 7-1/4

3-1/2 x 9-1/4

3-1/2 x 11-1/4

3-1/2 x 13-1/4

3-1/2 x 15-1/4

Nominal

Size

b x d

Boards

1 x 3

1 x 4

1 x 6

1 x 8

1 x 10

1 x 12

2 x 3

2 x 4

2 x 5

2 x 6

 2×8

2 x 10

2 x 12

2 x 14

3 x 4

3 x 5

3 x 6

3 x 8

3 x 10

3 x 12

3 x 14

4 x 4

4 x 5

4 x 6

4 x 8

4 x 10

4 x 16

Area

of

Section

Α

1.875

2.625

4.125

5.438

6.938

8 438

3.750

5.250

6.750

8.250

10.88

13.88

16.88

19.88

11.25

13.75

18.13

23.13

28.13

33.13

12.25

15.75

19.25

25.38

39.38

46.38

University of Michigan, TCAUP

Structures II

Slide 15 of 27

X-X AXIS

Section

Modulus

S_{xx} in.³

0.781

1.531

3.781

10.70

15.82

3.06

5.06

7.56

13.14

21.39

31.64

43.89

5.10

21.90

35.65

52.73

73.15

7.15

11.81

17.65

30.66

49.91

73.83

102.41

Moment

of

Inertia

I_{xx} in.⁴

2.680

10.40

49.47

88 99

1.953

5.359

11.39

20.80

47.63

98.93

178.0

290.8

8.932

34.66

79.39

164.9

296.6

484.6

738.9

12.51

26.58

48.53

111.1

230.8

415.3

678.5

and Decking (see NDS 4.1.3

Y-Y AXIS

Section

Modulus

0.234

0.328

0.516

0.680

0.867

1 055

0.938

1.313

1.688

2.063

2.719

3.469

4.219

4.969

3.646

7.552

9.635

11.72

13.80

7.146

9.188

11.23

14.80

18.89

22.97

27.05

Moment

of

Inertia

0.088

0.123

0.193

0.255

0.325

0.396

0.984

1.266

1.547

2.039

2.602

3.164

3.727

5.859

7.161

9.440

12.04

14.65

17.25

12.51

16.08

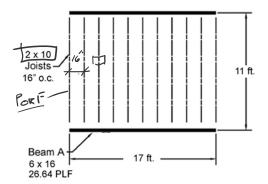
19.65

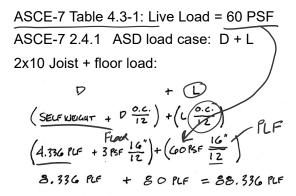
25.90

33.05

40.20

47.34


Analysis Example (pass/fail)


Given:

Req'd: pass or fail for floor joist

Given:

DATASET: 1 2
Span A 17 FT

Span B 11 FT

Joist O.C. Spacing 16 IN

Wood Density 45 PCF

Joist Size 2x10 NOMINAL

Beam Size 6x16 NOMINAL

Floor DL (not including joist) 3 PSF

Occupancy or Use assembly area fixed seats

ASCE-7 Table 4.3-1: Live Load = 60 PSF ASCE-7 2.4.1 ASD load case: D + L 2x10 Joist + floor load:

Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber

	1		X->	(AXIS	Y-1	AXIS						
	Standard	Area		Moment		Moment	Appro	ximate w	eight in po	ounds per	linear foo	ot (lbs/ft)
Nominal	Dressed	of	Section	of	Section	of		of pied	ce when d	ensity of v	wood equ	als:
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia						
bxd	b x d	Α	S _{xx}	I _{xx}	Syy	lyy	25 Ms/ft ³	30 lbs/ft3	35 lbs/ft ³	40 lbs/ft3	45 lbs/ft	50 lbs/ft ³
	in. x in.	in.2	in.3	in.4	in.3	in.4				· ·		
Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)												
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703	0.651	0.781	0.911	1.042	1.172	1.302
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984	0.911	1.094	1.276	1.458	1.641	1.823
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266	1.172	1.406	1.641	1.875	2.109	2.344
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547	1.432	1.719	2.005	2.292	2.578	2.865
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039	1.888	2.266	2.643	3.021	3.398	3.776
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602	2.409	2.891	3.372	3.854	4.336	4.818
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164	2.930	3.516	4.102	4.688	5.273	5.859
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727	3.451	4.141	4.831	5.521	6.211	6.901

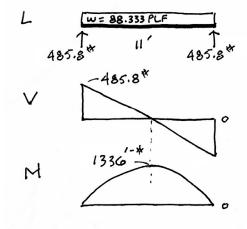
University of Michigan, TCAUP

Structures II

Slide 17 of 27

Analysis Example (pass/fail)

1. Find Max Shear & Moment on Joist


By equations:

Shear:

$$\frac{wl}{2} = \frac{88.336 (11)}{2} = 485.848 \text{ lbs}$$

Moment:

$$\frac{wl^2}{8} = \frac{88.336(11^2)}{8} = 1336.08 \text{ ft-lbs}$$

•
$$f_v = 1.5 \text{ V/A}$$

$$f_b = \frac{\cancel{M}}{5_x} = \frac{1336' - \%(12)}{21.39 \text{ m}^3} = 749.5 \text{ PSI}$$

$$f_{v} = \frac{3}{2} \frac{V}{A} = \frac{1.5 (485.8)^{4}}{13.86 \text{ m}^{2}} = 52.5 \text{ PSI}$$

Table 1B Section Properties of Standard Dressed (\$4\$) Sawn Lumber

				$\overline{}$										
	A CONTRACTOR OF THE CONTRACTOR		X->	(AXIS	Y-1	' AXIS								
	Standard	Area		Moment	1	Moment	Appro	oximate we	eight in po	ounds per	linear foo	ot (lbs/ft)		
Nominal	Dressed	of	Section	of	Section	of	of piece when density of wood equals:							
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia	-	-						
b x d	b x d	Α	S _{xx}	I _{xx}	Syy	lyy	25 lbs/ft3	30 lbs/ft3	35 lbs/ft ³	40 lbs/ft3	45 lbs/ft3	50 lbs/ft ³		
	in. x in.	in.2	in.3	in.4	in.3	in.4								
Dimension	Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)													
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703	0.651	0.781	0.911	1.042	1.172	1.302		
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984	0.911	1.094	1.276	1.458	1.641	1.823		
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266	1.172	1.406	1.641	1.875	2.109	2.344		
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547	1.432	1.719	2.005	2.292	2.578	2.865		
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039	1.888	2.266	2.643	3.021	3.398	3.776		
_ 2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602	2.409	2.891	3.372	3.854	4.336	4.818		
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164	2.930	3.516	4.102	4.688	5.273	5.859		
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727	3.451	4.141	4.831	5.521	6.211	6.901		

University of Michigan, TCAUP

Structures II

Slide 19 of 27

Analysis Example (pass/fail)

3. Determine allowable stresses – NDS Supplement

•
$$F_b = 875 \text{ psi}$$

• $F_v = 135 \text{ psi}$

Species and Grade

Table 4A Reference Design Values for Visually Graded Dimension Lumber (Cont.) (2" - 4" thick)^{1,2,3}

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

		Design values in pounds per square inch (psi)								
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	ular parallel to grain Modulus		f Elasticity	Specific Gravity ⁴	Grading Rules Agency
]	Fb	Ft	F _v	F₀⊥	F _o	E	E _{min}	G	
SPRUCE-PINE-FIR										
Select Structural		1,250	700	135	425	1,400	1,500,000	550,000		
No. 1/ No. 2	2" & wider	875	450	135	425	1,150	1,400,000	510,000		
No. 3	'	500	250	135	425	650	1,200,000	440,000		
Stud	2" & wider	675	350	135	425	725	1,200,000	440,000	0.42	NLGA
Construction	773	1,000	500	135	425	1,400	1,300,000	470,000		
Standard	2" - 4" wide	550	275	135	425	1,150	1,200,000	440,000		
Utility		275	125	135	425	750	1,100,000	400,000	1	

University of Michigan, TCAUP Structures II Slide 20 of 27

- 3. Determine allowable stresses NDS Supplement
 - · Adjustment Factors

Determine factors:

			ASD only	ASD and LRFD						LRFI only)					
			Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
_	$F_b = F_b$	x	C_D	См	Ct	C_L	C_{F}	C_{fu}	Ci	Cr	-	-	-	K _F	фь	λ
-	$F_{\mathbf{v}} = F_{\mathbf{v}}$	х	C_D	См	Ct	-	-	-	Ci	-	-	-	-	K _F	$\phi_{\rm v}$	λ

University of Michigan, TCAUP Structures II Slide 21 of 27

Analysis Example (pass/fail)

 C_D Load duration factor

Occupancy LL (10 years) = 1.0

Table 2.3.2 Frequently Used Load Duration Factors, C_D¹

Load Duration	C _D	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load
•		F

C_E Size factor

2 x 10 use 1.1

		Size Factors,	C_{F}		
		F		F _t	Fc
		Thickness	(breadth)	-	
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated design	values and size facto	ors
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4	_	0.4	0.6

C_r Repetitive Member Factor

Repetitive Member Factor, C_r

Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

University of Michigan, TCAUP

Structures II

Slide 23 of 27

Analysis Example (pass/fail)

 C_L Beam Stability Factor 2x10 w/ flooring: $C_L = 1.0$

 C_L = 1.0 if depth/width ratio meets criteria in 4.4.1 C_L = 1.0

Otherwise:

C_L < 1.0 calculate factor using section 3.3.3

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2 to 1	None	
3 to 1 2x6 2x8	The ends of the beam should be held in position	END BLOCKING
5 to 1 2x10	Hold compression edge in line (continuously)	John of Bram
6to 1 2x12	Diagonal bridging should be used	SHEATHINGY DECPINA
7 to 1 2 x 1 4	Both edges of the beam should be held in line	BA-DATING MAILOD SHEMTHING O PROPERTY OF TOT & BOTTO

3. Determine factored allowable stresses

- $F_b' = F_b (C_D)(C_L)(C_F)(C_f)$ $F_b' = 875 (1.0) (1.0) (1.1) (1.15) = 1107 \text{ psi}$
- F_v' = F_v (C_D)
 F_v' = 135 (1.0) = 135 psi -

4. Check that actual ≤ factored/allowable

Check that actual
$$\leq$$
 factored allowable

• $f_b < F'_b$ 749.5 < 1107

• $f_v < F'_v$ 52.5 < 135

• $f_v = \frac{M}{5_x} = \frac{1336' - (12)}{21.39 \text{ i.i.}^3} = \frac{749.5}{21.39} \text{ ps.}$

$$f_{v} = \frac{3}{2} \frac{V}{A} = \frac{1.5 (485.8)^{4}}{13.86 i^{2}} = 52.5 PSI$$

- 5. Check deflection
- 6. Check bearing $(F_{cp} = R/A_b)$

University of Michigan, TCAUP

Structures II

Slide 25 of 27

Analysis Example (pass/fail)

5. Check deflection < Code limits

- **NDS 3.5**
- Δ_{LT} Long term
- Δ_{ST} Short term
- K_{cr} creep factor

$$\Delta_{T} = K_{cr} \Delta_{LT} + \Delta_{ST}$$
 (NDS 3.5-1)

- 1.5 dry, seasoned lumber _-
- 2.0 wet service conditions
- 2.0 wood panels
- 2.0 CLT (dry)

TABLE 1604.3 DEFLECTION LIMITS^{a, b, c, h,}

CONSTRUCTION	(L)	S or W	$D + L^{d, \varrho}$
Roof members: ^e Supporting plaster or stucco ceiling Supporting nonplaster ceiling Not supporting ceiling	//360 //240 //180	//360 //240 //180	//240 //180 //120
Floor members	//360	_	1/240
Exterior walls: With plaster or stucco finishes With other brittle finishes With flexible finishes		//360 //240 //120	
Interior partitions: b With plaster or stucco finishes With other brittle finishes With flexible finishes	//360 //240 //120	=	=
Farm buildings	-	-	//180
Graanhousas			//120

$$\Delta_{ST}$$

$$\Delta_{L} = \frac{5 \text{ W L}^{4}}{384 \text{ E I}} = \frac{5 (80 \text{ PLF}) (11 \text{ FT})^{4} (1728)}{384 (1400000 \text{ PSI}) (98.93 \text{ In}^{4})}$$

$$\frac{\Delta LT}{\Delta_D} = \frac{5 \text{w} L^4}{384 \text{EI}} = \frac{5 (8.34 \text{ p}_F) (11 \text{ Fr})^4 (1728)}{384 (14000000 \text{ FsI}) (98.93 \text{ In}^4)}$$

$$\Delta_{T} = \frac{K_{CF} \Delta_{LF} + \Delta_{ST}}{= 1.5(0.02) + 0.19} = \frac{0.22''}{240}$$

$$\frac{1}{240} = \frac{11 \text{ FT}(12)}{240} = \frac{0.55''}{2.55''}$$

$$\frac{2}{240} = \frac{11 \text{ FT}(12)}{240} = 0.55''$$

6. Check bearing : F_{c⊥} < P/A_b

$$F_{c\perp} = 425 \text{ psi}$$
 $P = R = 485.8 \text{ lbs}$
 $A_b = 1.5" (1") = 1.5 \text{ in}^2$
 $f_b = \frac{485.8}{1.5} = 323.8 \text{ psi} < 425 \text{ psi} \text{ ok}$

3.10.4 Bearing Area Factor, Cb

Reference compression design values perpendicular to grain, $F_{c.l.}$, apply to bearings of any length at the ends of a member, and to all bearings 6" or more in length at any other location. For bearings less than 6" in length and not nearer than 3" to the end of a member, the reference compression design value perpendicular to grain, $F_{c.l.}$, shall be permitted to be multiplied by the following bearing area factor, C_b :

$$\underline{C_{b}} = \frac{\ell_{b} + 0.375}{\ell_{b}} \quad \text{Mot 47 Eup} \quad (3.10-2)$$

where:

 ℓ_{b} = bearing length measured parallel to grain, in.

Equation 3.10-2 gives the following bearing area factors, C_b , for the indicated bearing length on such small areas as plates and washers:

Tab	Table 3.10.4			Bearing Area Factors, C _b					
$\overline{\ell_{\rm b}}$	0.5"	1"	1.5"	2"	3"	4"	6" or more		
C_b	1.75	1.38	1.25	1.19	1.13	1.10	1.00		

ing length, ℓ_b , shall be equal to the diameter.

For round bearing areas such as washers, the bear-