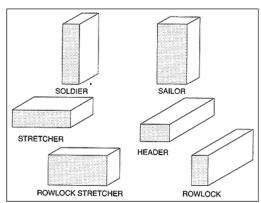
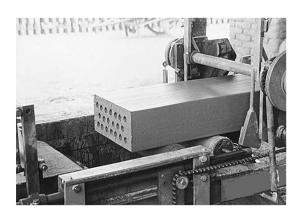
Introduction to Masonry

- Clay Masonry
- Concrete Masonry
- Autoclaved Aerated Concrete (AAC)


Höchst Entrance Hall, Frankfurt Arch: Peter Behrens, 1920-24 Photo: Eva Kröcher

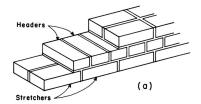
ctures II Slide 1 of 26

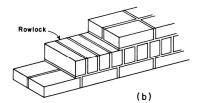

University of Michigan, TCAUP Structures II Slide 1 of 26

Clay Brick

- Molded or
- Extruded
- Cored adds stability, strength cored < 25% > hollow
- Fired (2000° F) /
- Sizes use 3/8" mortar bed
- Six ways to position in wall:

University of Michigan, TCAUP

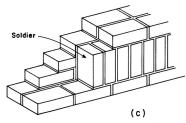
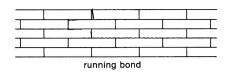
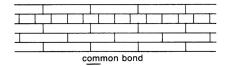
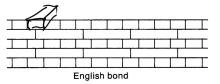


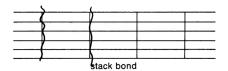

3/8" Mortar Joint Between Bricks (Most Common)

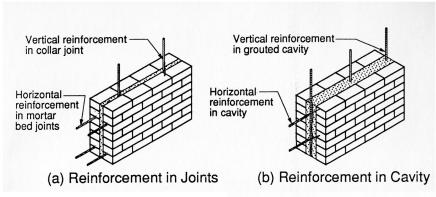
BRICK TYPE	SPECIFIED SIZE D X H X L (INCHES)	NOMINAL SIZE D X H X L	VERTICAL COURSE
Standard	3 5/8 × 2 1/4 × 8	Not modular	3 courses = 8"
Modular	3 5/8 × 2 1/4 × 7 5/8	4 × 2 2/3 × 8	3 courses = 8"
Norman	3 5/8 × 2 1/4 × 11 5/8	4 × 2 2/3 × 12	3 courses = 8"
Roman	3 5/8 × 1 5/8 × 11 5/8	4 × 2 × 12	1 course = 2"
Jumbo	3 5/8 × 2 3/4 × 8	4×3×8	1 course = 3"
Economy	3 5/8 × 3 5/8 × 7 5/8	4 × 4 × 8	1 course = 4"
Engineer	3 5/8 × 2 13/16 × 7 5/8	4 × 3 1/5 × 8	5 courses = 16"
King	2 3/4 × 2 5/8 × 9 5/8	Not modular	5 courses = 16"
Queen	2 3/4 × 2 3/4 × 7 5/8	Not modular	5 courses = 16"
Utility	3 5/8 × 3 5/8 × 11 5/8	4 × 4 × 12	1 course = 4"

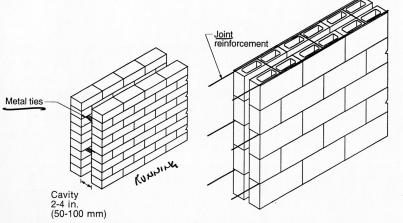
Structures II Slide 2 of 26

Clay Brick

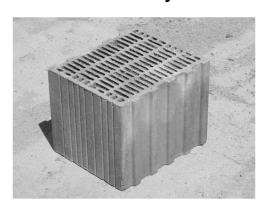





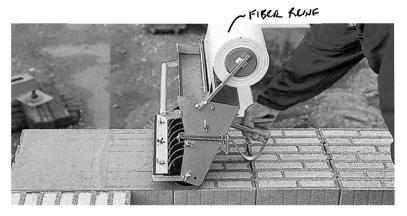

FIGURE 4.2. Ordinary positions for bricks.





University of Michigan, TCAUP Structures II Slide 3 of 26


Cavity Walls



Insulated Clay Tile

Ziegelindustrie International https://www.zi-online.info/en/index.html

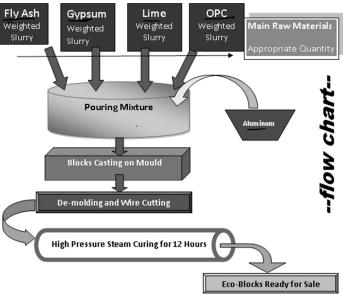
Autoclaved Aeriated Concrete (AAC)

Used predominately in Europe
Developed by Dr. Johan Axel Eriksson in
mid- 1920s in Sweden as "Ytong"
since 1943, Hebel blocks in Germany
Current largest production in China

Lighter weight

Better insulation value

Better fire resistance


Better moisture transmission

Larger blocks for faster erection

Can be shaped on site

University of Michigan, TCAUP

Autoclaved Aeriated Concrete (AAC)

Density – 20 to 50 PCF (floats)

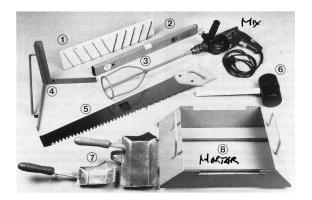
Compressive strength – 300 to 900 PSI

Allowable Shear Stress - 8 to 22 PSI

Thermal Resistance - 0.8 to 1.25 R/IN

Structures II

Slide 7 of 26

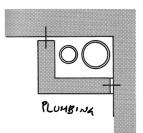

LARGE

Autoclaved Aeriated Concrete (AAC)

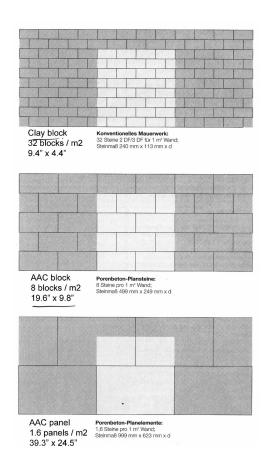
Easily shaped on site

Thin mortar bed - 1/8" (1mm to 3mm)

Tools for placement (below)



University of Michigan, TCAUP Structures II Slide 9 of 26


Autoclaved Aeriated Concrete (AAC)

Larger blocks so faster layup – e.g. 8"x8"x24"

Panel layup with onsite crane

Autoclaved Aeriated Concrete (AAC)

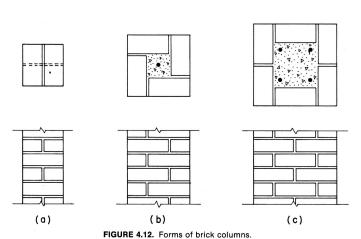
Finish with stucco

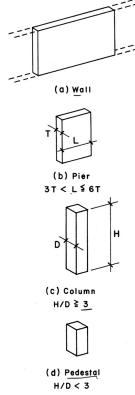
Abb. 2.4.4-1 Anbringen der Sockelabschluß- und Eckschutzschiene zur Sicherung der Mauerwerkskanten

Abb. 2.4.4-2
Auftrag des Grundputzes von Hand

Abb. 2.4.4-3 Auftrag der Deckschicht

Abb. 2.4.4-4 Verreiben der Putzoberfläche mit Filzbrett oder Schwammscheibe


University of Michigan, TCAUP


Structures II

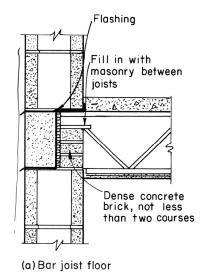
Slide 11 of 26

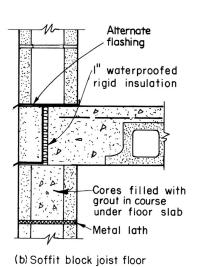
Member Types

Compression members based on proportions.

FIGURE 4.6. Classification of vertical compression members.

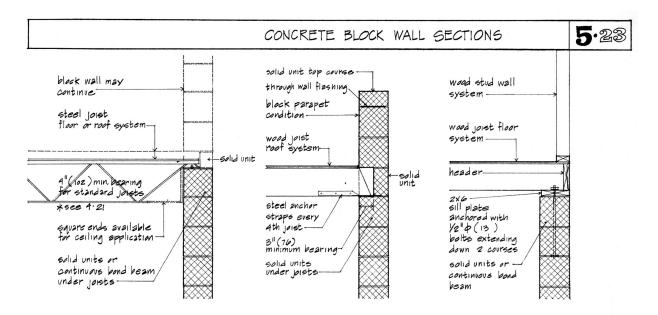
Slide 12 of 26


Concrete Masonry Units (CMU) wall construction

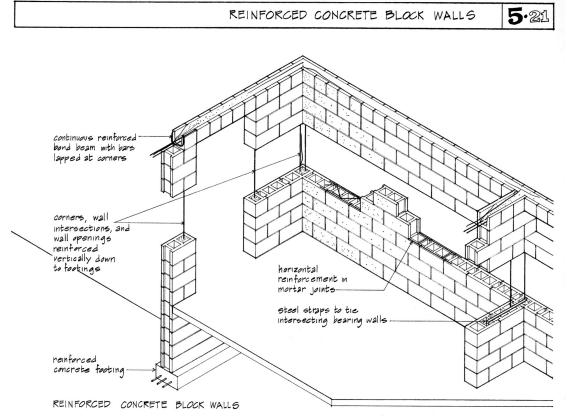


University of Michigan, TCAUP Structures II Slide 13 of 26

Member Details


Floor / Column details.

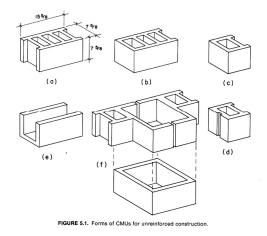
Concrete Masonry Units (CMU)

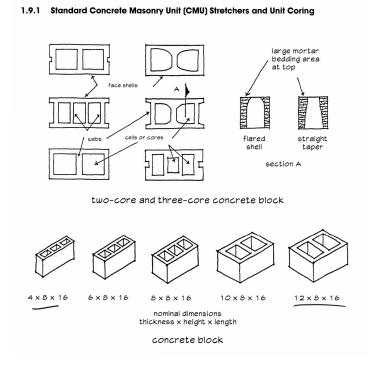

· wall sections

These wall sections are not intended to be complete. They exclude floor, wall, and ceiling finishes, trim, etc. They attempt to illustrate how various floor and roof systems are supported by a concrete block bearing wall. The above-grade wall is literally an extension of the concrete block foundation wall system. Note that the edges of floor and roof planes are not visible from the exterior except at the top of the concrete block wall. All vertical dimensions should be modular, especially is the block is left exposed as the wall finish

University of Michigan, TCAUP Structures II Slide 15 of 26

Concrete Masonry Units (CMU)

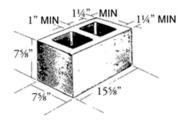



When concrete black walls are subjected to lateral forces such as caused by wind, earth pressure below grade, and earthquakes, they may be reinforced as illustrated above.

University of Michigan, TCAUP Structures II Slide 16 of 26

Concrete Masonry Units (CMU)

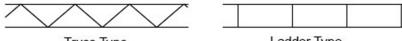
- Cast (molds)
- Dried
- Autoclaved



University of Michigan, TCAUP Structures II Slide 17 of 26

Concrete Masonry Units (CMU)

- · Geometric Properties
- NCMA TEK 14-1B
- Radius of gyration, $r = \sqrt{\frac{I}{A}}$


8-inch (203-mm) Single Wythe Walls, 11/4 in. (32 mm) Face Shells (standard)

Hollow No grout Face shell 30.0 308.7 81.0 Hollow No grout Full 41.5 334.0 87.6 100% solid/solidly grouted Full 91.5 443.3 116.3 Hollow 16 Face shell 62.0 378.6 99.3 Hollow 24 Face shell 51.3 355.3 93.2 Hollow 32 Face shell 46.0 343.7 90.1 Hollow 40 Face shell 42.8 336.7 88.3 Hollow 48 Face shell 40.7 332.0 87.1		Horizontal Section Properties (Masonry Spanning Vertically)					
Hollow No grout Face shell 30.0 308.7 81.0 Hollow No grout Full 41.5 334.0 87.6 100% solid/solidly grouted Full 91.5 443.3 116.3 Hollow 16 Face shell 62.0 378.6 99.3 Hollow 24 Face shell 51.3 355.3 93.2 Hollow 32 Face shell 46.0 343.7 90.1 Hollow 40 Face shell 42.8 336.7 88.3 Hollow 48 Face shell 40.7 332.0 87.1			Grout	Mortar	Net cros	s-sectional p	properties ^A
Hollow No grout Full 41.5 334.0 87.6 100% solid/solidly grouted Full 91.5 443.3 116.3 Hollow 16 Face shell 62.0 378.6 99.3 Hollow 24 Face shell 51.3 355.3 93.2 Hollow 32 Face shell 46.0 343.7 90.1 Hollow 40 Face shell 42.8 336.7 88.3 Hollow 48 Face shell 40.7 332.0 87.1		Unit	spacing (in.)	bedding	A_n (in.2/ft)	I_n (in.4/ft)	S_n (in.3/ft)
100% solid/solidly grouted Full 91.5 443.3 116.3 Hollow 16 Face shell 62.0 378.6 99.3 Hollow 24 Face shell 51.3 355.3 93.2 Hollow 32 Face shell 46.0 343.7 90.1 Hollow 40 Face shell 42.8 336.7 88.3 Hollow 48 Face shell 40.7 332.0 87.1		Hollow	No grout	Face shell	30.0	308.7	81.0
100% solid/solidly grouted Full 91.5 443.3 116.3 Hollow 16	16	Hollow	No grout	Ful1	41.5	334.0	87.6
Hollow 24 Face shell 51.3 355.3 93.2 Hollow 32 Face shell 46.0 343.7 90.1 Hollow 40 Face shell 42.8 336.7 88.3 Hollow 48 Face shell 40.7 332.0 87.1	1	100% sol	id/solidly grouted	Full	91.5	443.3	116.3
Hollow 24 Face shell 51.3 355.3 93.2 Hollow 32 Face shell 46.0 343.7 90.1 Hollow 40 Face shell 42.8 336.7 88.3 Hollow 48 Face shell 40.7 332.0 87.1	tantan	Hollow	16	Face shell	62.0	378.6	99.3
Hollow 40 Face shell 42.8 336.7 88.3 Hollow 48 Face shell 40.7 332.0 87.1	1801401	Hollow		Face shell	51.3	355.3	93.2
Hollow 48 Face shell 40.7 332.0 87.1		Hollow	32	Face shell	46.0	343.7	90.1
		Hollow	40	Face shell	42.8	336.7	88.3
Hollow 72 Face shall 27.1 224.2 95.0		Hollow	48	Face shell	40.7	332.0	87.1
Figure 72 Face shell 37.1 324.3 83.0		Hollow	72	Face shell	37.1	324.3	85.0
Hollow 96 Face shell 35.3 320.4 84.0		Hollow	96	Face shell	35.3	320.4	84.0
Hollow 120 Face shell 34.3 318.0 83.4		Hollow	120	Face shell	34.3	318.0	83.4

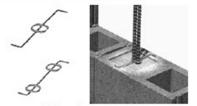
Concrete Masonry Units (CMU)

Reinforcing

Joint Reinforcing

Truss Type

Ladder Type


4.5 Horizontal reinforcement required for masonry not laid in running bond of $0.00028A_g$, placed at a maximum spacing of 48 in. o.c. in horizontal mortar joints or in bond beams.

W1.7 wire $0.00028(7.625)(16) = 0.034in^2$

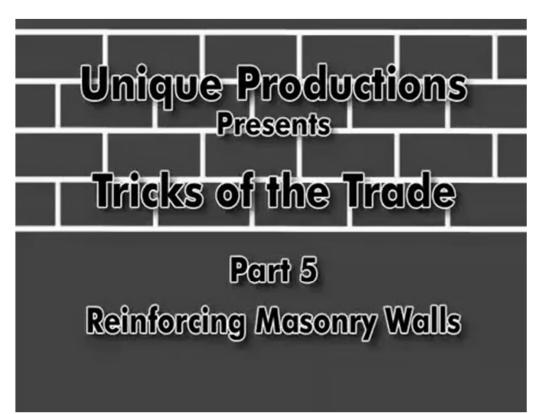
Use 9 gage (W1.7) at 16 in. o.c.

dia. = 0.147 in area = 0.017 in² 2x wire = 0.034 in²

Placed in mortar joints

Concrete Masonry Units

Placed in cells


8

University of Michigan, TCAUP

Structures II

Slide 19 of 26

Concrete Masonry Construction

Mortar Types

Types M, S, N, O

The following mortar designations took effect in the mid-1950's:

M	a	S	o	N	w	O	r	K	
strong	est							weakest	

Table 2-3. Guide to the Selection of Mortar Type*

		Mortar type			
Location	Building segment	Recommended	Alternative		
Exterior, above grade	Load-bearing walls Non-load-bearing walls Parapet walls	N O** N	S or M N or S S		
Exterior, at or below grade	Foundation walls, retaining walls, manholes, sewers, pavements, walks, and patios	Sţ	M or N†		
Interior	Load-bearing walls Non-load-bearing partitions	N O	S or M N		

Note: For tuckpointing mortar, see "Tuckpointing," Chapter 9.

Relative Parts by Volume

mortar type	Portland cement	lime	sand
М	1	¹ ₄	3 ¹ ₂
S	1	12	4 ¹ 2
N	1	1	6
O	1	2	9
	3	ii.	

sum should equal 1/3 of sand volume (assuming that sand has void ratio of 1 in 3)

University of Michigan, TCAUP Structures II Slide 21 of 26

Mortar Types

Type M, S, N, O

Slump is higher than cast concrete based on workability

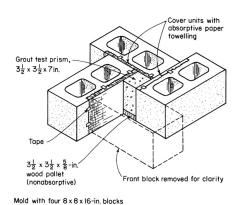


Fig. 2-29. ASTM C1019 method of using masonry units to form a prism for compression-testing of masonry grout.

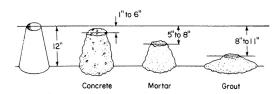


Fig. 2-27. Slump test comparison of concrete, mortar, and masonry grout.

^{*}Adapted from ASTM C270. This table does not provide for specialized mortar uses, such as chimney, reinforced masonry, and acid-resistant mortars.

**Type O mortar is recommended for use where the masonry is unlikely to be frozen when saturated or unlikely to be subjected to high winds or other significant lateral loads. Type N or S mortar should be used in other cases.

*Hasonry exposed to weather in a nominally horizontal surface is extremely vulnerable to weathering. Mortar for such masonry should be selected with due caution.

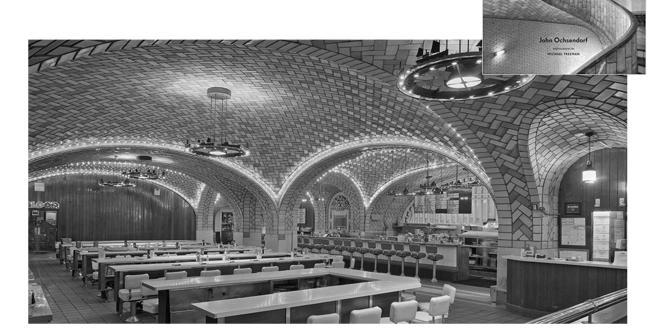
Art Nueveau

Catalonian

- Antonio Gaudi 1852 1926
- Catalonian Art Nouveau
- Park Guell

University of Michigan, TCAUP Masonry Slide 23 of 26

Art Nueveau


Catalonian

- Antonio Gaudi 1852 1926
- Catalonian Art Nouveau
- Crypt at Colonia Guell

Guastavino Vaulting

- Guastavino Co. 1885 1962
- Started in Boston

Masonry

GUASTAVINO VAULTING

THE ART OF

Slide 25 of 26

Guastavino Vaulting

• Guastavino Co. 1885 – 1962

University of Michigan, TCAUP

University of Michigan, TCAUP Masonry Slide 26 of 26