Architecture 324 Structures II

Wood Column Analysis

- Failure Modes
- Euler Equation
- End Conditions and Lateral Bracing
- · Analysis of Wood Columns

Solemar, Bad Dürrheim Klaus Linkwitz, 1987

University of Michigan, TCAUP

Structures II

Slide 1 of 27

Failure Modes

FLEXURE

AXIAL

Strength

$$f_b = \frac{Mc}{I} \qquad f_v = \frac{VQ}{Ib}$$

$$f_c = \frac{P}{A}$$

Stability

$$C_{L} = \frac{1 + \left(F_{bE}/F_{b}^{*}\right)}{1.9} - \sqrt{\left[\frac{1 + \left(F_{bE}/F_{b}^{*}\right)}{1.9}\right]^{2} - \frac{F_{bE}/F_{b}^{*}}{0.95}} \\ C_{P} = \frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c} - \sqrt{\left[\frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}} \\ C_{P} = \frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c} - \sqrt{\left[\frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}{c}} \\ C_{P} = \frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c} - \sqrt{\left[\frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}{c}} \\ C_{P} = \frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c} - \sqrt{\left[\frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}{c}} \\ C_{P} = \frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c} - \sqrt{\left[\frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}{c}} \\ C_{P} = \frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c} - \sqrt{\left[\frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}{c}} \\ C_{P} = \frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c} - \sqrt{\left[\frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}{c}} \\ C_{P} = \frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c} - \sqrt{\left[\frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}{c}} \\ C_{P} = \frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c} - \sqrt{\left[\frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}{c}} \\ C_{P} = \frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c} - \sqrt{\left[\frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}{c}}$$

$$C_{p} = \frac{1 + \left(F_{cE} \middle/ F_{c}^{*}\right)}{2c} - \sqrt{\left\lceil \frac{1 + \left(F_{cE} \middle/ F_{c}^{*}\right)}{2c} \right\rceil^{2} - \frac{F_{cE} \middle/ F_{c}^{*}}{c}}$$

Serviceability

Deflection (or Bearing)

Bearing (crushing limit)

Leonhard Euler (1707 - 1783)

Euler Buckling (elastic buckling)

$$P_{Cr} = \frac{\pi^2 AE}{\left(\frac{KL}{r}\right)^2} = \frac{\pi^2 IE}{(KL)^2}$$

$$r = \sqrt{\frac{I}{A}}$$

$$I = Ar^2$$

portrait by Emanuel Handmann,1753

EULER EQUATION

LIMIT

- A = Cross sectional area (in²)
- E = Modulus of elasticity of the material (lb/in²)
- K = Stiffness (curvature mode) factor
- L = Column length between pinned ends (in.)
- r = radius of gyration (in.)

$$f_{cr} = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$

$$F_{cE} = \frac{0.822 \text{ E'}_{\min}}{\left(\frac{le}{d}\right)^2}$$

$$r = d/\sqrt{12}$$

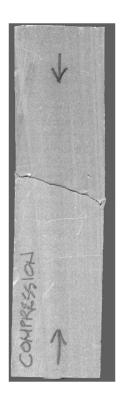
University of Michigan, TCAUP

Structures II

Slide 3 of 27

Failure Mode - Strength

Short Columns - fail by crushing


Analysis

$$f_c = \frac{P}{A} \le F'_c$$

Design

$$A = \frac{P}{F'_c}$$

- f_c = Actual compressive stress
- A = Cross-sectional area of column (in²)
- P = Load on the column
- F'_c = Allowable compressive stress per codes

Failure Modes – Stability

Long Columns - fail by buckling

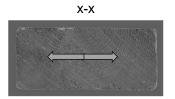
Traditional Euler

$$f_{cr} = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$

- E = Modulus of elasticity of the column material (psi)
- K = Stiffness (curvature mode) factor
- L = Column length between ends (inches)
- r = radius of gyration = $\sqrt{I/A}$ (inches)

NDS Equation

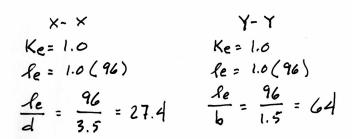
- le = Ke l_{...} (inches)
- d (inches)
- 0.822 = $\pi^2/12$

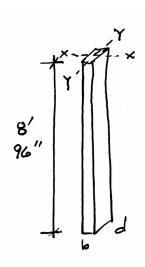

University of Michigan, TCAUP Structures II Slide 5 of 27

Slenderness Ratio le/d

Slenderness Ratios:

The larger ratio will fail first. Try to balance for efficiency.


Slenderness Limited to < 50



$$d = 3.5$$

$$b = 1.5$$

Slide 6 of 27

End Support Conditions, K_e

K_e is a constant based on the end conditions

 ℓ is the actual length

 $\ell_{\rm e}$ is the effective length (curved part)

University of Michigan, TCAUP

Structures II

Slide 7 of 27

Allowable Flexure Stress F_c'

Actual Flexure Stress f_b

 F_{c} from tables determined by species and grade

 $f_c = P/A$

 F_c ' = F_c (adjustment factors)

 $F_c' \ge f_c$

Table 4A (Cont.)

Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick) 1,2,3

(All species except Southern Pine—see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

				Design va	alues in pounds p	er square inch (p	si)			
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
	1	F _b	·F _t	F _v	F _{c⊥}	F _c	E	Emin	G	
SPRUCE-PINE-FIR							The Car	1 12 12 13		100
Select Structural		1,250	700	135	425	1,400	1,500,000	550,000		
No. 1/ No. 2	2" & wider	875	450	135	425	1,150	1,400,000	510,000		
No. 3		500	250	135	425	650	1,200,000	440,000		y 1
Stud	2" & wider	675	350	135	425	725	1,200,000	440,000	0.42	NLGA
Construction		1,000	500	135	425	1,400	1,300,000	470,000		1 1
Standard	2" - 4" wide	550	275	135	425	1,150	1,200,000	440,000		
Utility		275	125	135	425	750	1,100,000	400,000	·	

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

		ASD only		ASD and LRFD								LRFD only			
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	4 Format Conversion Factor	- Resistance Factor	Time Effect Factor
$F_b' = F_b$	X	C_{D}	$C_{\mathbf{M}}$	C_{t}	C_{L}	C_{F}	C_{fu}	C_{i}	C_{r}	-	-	-	2.54	0.85	λ
$F_t = F_t$	Х	C_D	$C_{\mathbf{M}}$	C_{t}	-	C_{F}	-	C_i	-	-	-	-	2.70	0.80	λ
$F_{v} = F_{v}$	Х	CD	C_{M}	Ct	-	-	-	Ci	-	-	-	-	2.88	0.75	λ
$F_c' = F_c$	Х	CD	$C_{\mathbf{M}}$	C_t	-	C_{F}	-	C_i	-	Ср	-	-	2.40	0.90	λ
$F_{c\perp} = F_{c\perp}$	Х	-	$C_{\mathbf{M}}$	C_{t}	-	-	-	Ci	-	-	-	Сь	1.67	0.90	-
E' = E	Х	-	C_{M}	C_{t}	-	-	-	C_i	-	-	-	-	-	-	-
$E_{\min}' = E_{\min}$	Х	-	C_{M}	C_{t}	-	-	-	Ci	-	-	C_{T}	-	1.76	0.85	-

University of Michigan, TCAUP Structures II Slide 9 of 27

Allowable Flexure Stress F_c'

 $\boldsymbol{F}_{\boldsymbol{c}}$ from tables determined by species and grade

$$F_c' = F_c (C_D C_M C_t C_F C_i C_P)$$

Adjustment factors for compression:

C_D Load Duration Factor

C_t Temperature Factor

Table 2.3.2 Frequently Used Load Duration Factors, C_D¹

C_D	Typical Design Loads
0.9	Dead Load
1.0	Occupancy Live Load
1.15	Snow Load
1.25	Construction Load
1.6	Wind/Earthquake Load
2.0	Impact Load
	0.9 1.0 1.15 1.25 1.6

Table 2.3.3	Temperature Factor, Ct
-------------	------------------------

Reference Design Values	In-Service Moisture	Ct						
varues	Conditions ¹	T≤100°F	100°F <t≤125°f< th=""><th>125°F<t≤150°f< th=""></t≤150°f<></th></t≤125°f<>	125°F <t≤150°f< th=""></t≤150°f<>				
F _t , E, E _{min}	Wet or Dry	1.0	0.9	0.9				
F F F 1F	Dry	1.0	0.8	0.7				
F_b , F_v , F_c , and $F_{c\perp}$	Wet	1.0	0.7	0.5				

Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.

)
)
)
e)
)
)

to (DL+LL+SL+WL) \leq (1.6) (Design value)

(7) Actual stress due

Allowable Flexure Stress F_c' (For **Dimensioned Lumber**)

F_c from tables determined by species and grade

 $F_c' = F_c (C_D C_M C_t C_F C_i C_P)$

Adjustment factors for compression:

C_M Moisture Factor C_F Size Factor

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_M

F_{b} F_{t} F_{v} $F_{c\perp}$	F_c	E and E _{min}
0.85* 1.0 0.97 0.67	0.8**	0.9

^{*} when $(F_b)(C_F) \le 1,150 \text{ psi}, C_M = 1.0$

Size Factors, C_E

		Size ractors,	∪ _F	1	
	F	b	F _t	F _c	
		Thickness	(breadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated design	values and size fac	ors
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4	_	0.4	0.6

University of Michigan, TCAUP

Structures II

Slide 11 of 27

Allowable Flexure Stress F_c' (For **Timbers**)

F_c from tables determined by species and grade

 $F_c' = F_c (C_D C_M C_t C_F C_i C_P)$

Adjustment factors for compression:

C_M Moisture Factor

C_F Size Factor

Size Factor, C_F

When visually graded timbers are subjected to loads applied to the narrow face, tabulated design values shall be multiplied by the following size factors:

Size Factors, C_F

Depth	F _b	Ft	Fe
d > 12"	(12/d) ^{1/9}	1.0	1.0
$d \le 12$ "	1.0	1.0	1.0

Wet Service Factor, C_M

When timbers are used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table (for Southern Pine and Mixed Southern Pine, use tabulated design values without further adjustment):

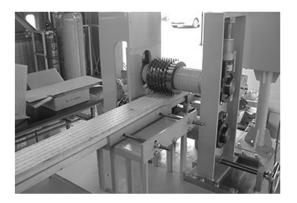
Wet Service Factors, C_M

F_{b}	$F_{t} \\$	$\boldsymbol{F_{v}}$	$F_{c \perp}$	F_{c}	\boldsymbol{E} and \boldsymbol{E}_{min}
1.00	1.00	1.00	0.67	0.91	1.00

^{**} when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$

Allowable Flexure Stress F_c'

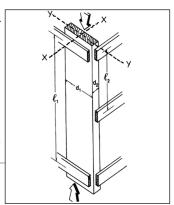
F_c from tables determined by species and grade


$$F_c' = F_c (C_D C_M C_t C_F C_i C_P)$$

 $\begin{array}{c} \text{Adjustment factors for compression}: \\ \text{C_{i} Incising Factor} \end{array}$

Table 4.3.8 Incising Factors, C,

Design Value	C_{i}	
E, E _{min}	0.95	
F_b, F_t, F_c, F_v	0.80	
$F_{c\perp}$	1.00	


University of Michigan, TCAUP Structures II

Allowable Compression Stress F.

F_c from tables determined by species and grade

$$F_c' = F_c (C_D C_M C_t C_F C_i C_P)$$

Fig. 3F

Slide 13 of 27

3.7 Solid Columns

3.7.1 Column Stability Factor, C,

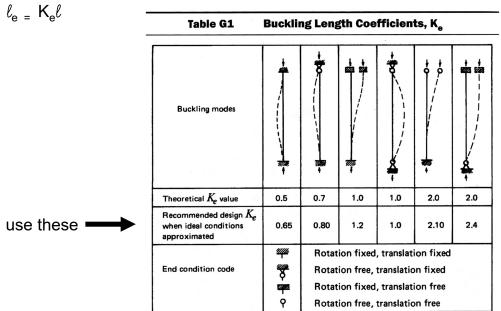
- 3.7.1.1 When a compression member is supported throughout its length to prevent lateral displacement in all directions, $C_P = 1.0$.
- 3.7.1.2 The effective column length, ℓ_e , for a solid column shall be determined in accordance with principles of engineering mechanics. One method for determining effective column length, when end-fixity conditions are known, is to multiply actual column length by the appropriate effective length factor specified in Appendix G, $\ell_e = (K_e)(\ell)$.
- 3.7.1.3 For solid columns with rectangular cross section, the slenderness ratio, ℓ_c/d , shall be taken as the larger of the ratios ℓ_{e1}/d_1 or ℓ_{e2}/d_2 (see Figure 3F) where each ratio has been adjusted by the appropriate buckling length coefficient, K_e , from Appendix G.
- 3.7.1.4 The slenderness ratio for solid columns, ℓ_{e}/d , shall not exceed 50, except that during construction ℓ_{e}/d shall not exceed 75.
- 3.7.1.5 The column stability factor shall be calculated as follows:

 $C_{p} = \frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}$ (3.7-1)

where:

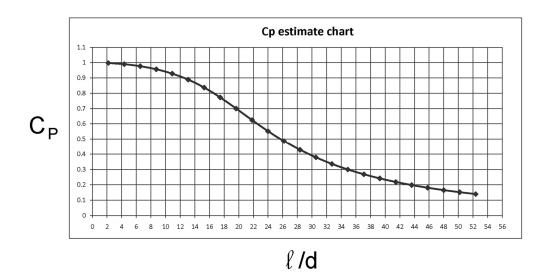
 F_c = reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_p (see 2.3), psi

$$F_{cE} = \frac{0.822 \ E_{min}'}{(\ell_e/d)^2}$$


- c = 0.8 for sawn lumber
- c = 0.85 for round timber poles and piles
- c = 0.9 for structural glued laminated timber or structural composite lumber

End Support Conditions, K_e

K_e is a constant based on the end conditions


 ℓ is the actual length

 $\ell_{\rm e}$ is the effective length (curved part)

University of Michigan, TCAUP Structures II Slide 15 of 27

 C_{P}

This is an estimate - not the exact value

Analysis of Wood Columns

Data:

- Column size, length
- Support conditions
- Material properties F_c, E_{min}
- Load

Required:

- Pass/Fail or margin of safety
- Calculate slenderness ratio I_e/d largest ratio governs. Must be < 50
- 2. Find adjustment factors $C_D C_M C_t C_F C_i$
- Calculate C_P
- 4. Determine allowable F'_c by multiplying the tabulated F_c by all the above factors
- 5. Calculate the actual stress: $f_c = P/A$
- Compare Allowable and Actual stress.

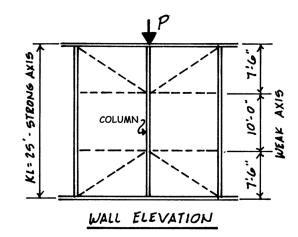
$$F'_c > f_c$$
 passes

University of Michigan, TCAUP

Structures II

Slide 17 of 27

Analysis Example: Pass/Fail


Data: section 4x8 (nominal)

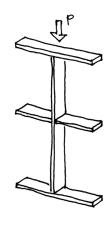
Douglas Fir-Larch No1

M.C. 15%

P = 7000 LBS (Snow Load)

Find: Pass/Fail

From NDS Supplement Table 4A


$$F_c = 1500 \text{ psi}$$

 $E_{min} = 620000 \text{ psi}$

$$C_D = 1.15 \text{ (snow)}$$

 $C_M = 1.0$

$$C_t = 1.0$$

 $C_F = 1.05 (4x8)$
 $C_i = 1.0$

$$C_P = ?$$

Species and commercial grade	Size classification	Compression perpendicular to grain	Compression parallel to grain	Modulus of Elasticity		
		F _{c⊥}	F _c	E	E _{min}	
DOUGLAS FIR-LARCH				18 × 1. 18 1.		
Select Structural		625	1,700	1,900,000	690,000	
No. 1 & Btr		625	1.550	1.800.000	660,000	
No. 1	2" & wider	625	1,500	1,700,000	620,000	
No. 2		625	1,350	1,600,000	580,000	
No. 3		625	775	1,400,000	510,000	
Stud	2" & wider	625	850	1,400,000	510,000	
Construction		625	1,650	1,500,000	550,000	
Standard	2" - 4" wide	625	1,400	1,400,000	510,000	
Utility		625	900	1,300,000	470,000	

Analysis Example: Pass/Fail

Determine Allowable Flexure Stress F_c'

 $F_c = 1500 \text{ psi}$

 $F_c' = F_c (C_D C_M C_t C_F C_i C_P)$

 $E'_{min} = E_{min} (C_m C_t C_i C_T)$

Adjustment factors for compression:

C_M Moisture Factor = 1.0 (dry)

 C_F Size Factor = 1.05

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_M

	F_{b}	F_{t}	$F_{\rm v}$	$F_{c\perp}$	F_c	\boldsymbol{E} and $\boldsymbol{E}_{\text{min}}$
_	0.85*	1.0	0.97	0.67	0.8**	0.9

^{*} when $(F_b)(C_F) \le 1,150$ psi, $C_M = 1.0$

^{**} when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$

		Size Factors,	C_F	1	
		F	b	F _t	F _c
		Thickness (breadth)			
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade tabulated design values and size fac		ors	
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4	_	0.4	0.6

University of Michigan, TCAUP

Structures II

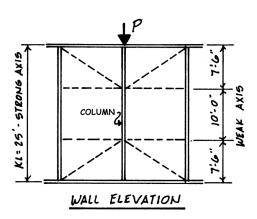
Slide 19 of 27

Analysis Example: Pass/Fail

Calculate C_P

$$C_{p} = \frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c} - \sqrt{\left[\frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}{c}} \quad (3.7-1)$$

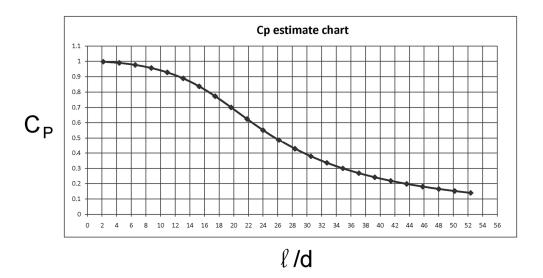
where:


F_c = reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_c (see 2.3), psi

$$F_{cE} = \frac{0.822 E_{min}'}{(\ell_e/d)^2}$$

c = 0.8 for sawn lumber

c = 0.85 for round timber poles and piles


c = 0.9 for structural glued laminated timber or structural composite lumber

4x8 3.5"x7.25"

$$x-x$$
 $le_{x}=25'=300''$
 $le_{y}=10'=120''$
 $le_{x}/d_{1}=\frac{300''}{7.25''}$
 $le_{y}/d_{2}=\frac{120''}{3.5''}$
 $le_{y}/d_{3}=\frac{120''}{3.5''}$
 $le_{y}/d_{4}=\frac{120''}{3.5''}$

This is an estimate - not the exact value

University of Michigan, TCAUP Structures II Slide 21 of 27

Analysis Example: Pass/Fail

Calculate C_P

$$C_{p} = \frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c} - \sqrt{\left[\frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}} \quad (3.7-1)$$

where

F_c = reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_ρ (see 2.3), psi

$$F_{cE} = \frac{0.822 \ E_{min}'}{(\ell_e / d)^2}$$

c = 0.8 for sawn lumber

c = 0.85 for round timber poles and piles

c = 0.9 for structural glued laminated timber or structural composite lumber

$$E_{\min} = E_{\min} \quad x \quad C_{M} \quad C_{t} \quad C_{i} \quad C_{T}$$

$$F_{CE} = \frac{0.822 \text{ E'min}}{(fe/d)^2}$$

$$= \frac{0.822(620000)}{(41.4)^2}$$

$$= 297.6 \text{ psi}$$

$$C_{p} = \frac{1 + 0.164}{2(0.8)} - \sqrt{\left[\frac{1 + 0.164}{2(0.8)}\right]^{2} - \frac{0.164}{.8}}$$

Analysis Example: Pass/Fail

Determine Allowable stress

$$F_c^1 = 1500(1.15 \cdot 1.05 \cdot 0.1584)$$

= 286.9 PS1

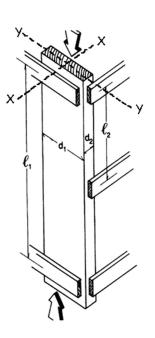
Compare Allowable and Actual stress $F'_{c} > f_{c}$ passes

University of Michigan, TCAUP

Structures II

Slide 23 of 27

Capacity Analysis of Columns


Data:

- Column <u>size</u>, length
- Support conditions
- Material properties F_c, E_{min}

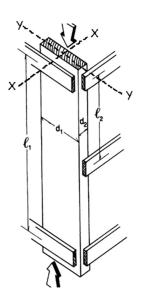
Required:

- Maximum Load Capacity, P_{max}
- Calculate slenderness ratio l_e/d largest ratio governs. Must be < 50
- 2. Find adjustment factors $C_D C_M C_t C_F C_i$
- 3. Calculate C_P
- 4. Determine F'_c by multiplying the tabulated F_c by all the above factors
- 5. Set actual stress = allowable, $f_c = F'_c$
- 6. Find the maximum allowable load

$$P_{max} = F'_{c} A$$

Analysis Example: Capacity

Data:


- 4x10
- Hem Fir, No. 2 M.C. = 20%
- Wind Load
- $L_1 = 8$ ' $L_2 = 4$ ' $K_e = 1.0$

Required:

Maximum Load Capacity, Pmax

From NDS Supplement Table 4A Fc = 1300 psi Emin = 470000 psi

$$C_D = 1.6$$
 (Table 2.3.2.)
 $C_{Mc} = 0.8$ $C_{ME} = 0.9$
 $C_t = 1.0$ (chart in Supplement)
 $C_i = 1.0$
 $C_P = ?$

$$4 - 4$$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 $4 - 4$
 4

University of Michigan, TCAUP

Structures II

Slide 25 of 27

Allowable Flexure Stress F_c'

4 x 10 M.C. = 20%

F_c from tables determined by species and grade

$$F_c' = F_c (C_D C_M C_t C_F C_i C_P)$$

Adjustment factors for compression:

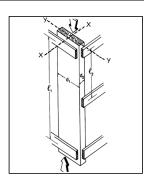
$$C_M$$
 Moisture Factor $C_{Mc} = 0.8$ $C_{ME} = 0.9$ C_F Size Factor = 1.0

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_M

F_b	F_{t}	$F_{\rm v}$	$F_{c\perp}$	F_c	\boldsymbol{E} and $\boldsymbol{E}_{\text{min}}$
0.85*	1.0	0.97	0.67	0.8**	0.9


^{*} when $(F_b)(C_F) \le 1,150 \text{ psi}, C_M = 1.0$

^{**} when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$

		Size Factors,	C_{F}			
		F	² b	F _t	F _c	
		Thickness (breadth)				
Grades	Width (depth)	2" & 3"	4"			
	2", 3", & 4"	1.5	1.5	1.5	1.15	
Select	5"	1.4	1.4	1.4	1.1	
Structural,	6"	1.3	1.3	1.3	1.1	
No.1 & Btr,	8"	1.2	1.3	1.2	1.05	
No.1, No.2,	10"	1.1	1.2	1.1	1.0	
No.3	12"	1.0	1.1	1.0	1.0	
	14" & wider	0.9	1.0	0.9	0.9	
	2", 3", & 4"	1.1	1.1	1.1	1.05	
Stud	5" & 6"	1.0	1.0	1.0	1.0	
	8" & wider	Use No.3 Grade	Use No.3 Grade tabulated design values and size fa			
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0	
Standard						
Utility	4"	1.0	1.0	1.0	1.0	
	2" & 3"	0.4	_	0.4	0.6	

Capacity Example

Find C_D

$$C_{p} = \frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c} - \sqrt{\left[\frac{1 + \left(F_{cE}/F_{c}^{*}\right)}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}{c}} \quad (3.7-1)$$

where:

F_c = reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_c (see 2.3), psi

$$F_{cE} = \frac{0.822 \ E_{min}'}{(\ell_e / d)^2}$$

c = 0.8 for sawn lumber

c = 0.85 for round timber poles and piles

c = 0.9 for structural glued laminated timber or structural composite lumber

Find the maximum load, P_{max}

University of Michigan, TCAUP

Structures II

Slide 27 of 27