

Winter 2025 Recitation

FACULTY: Prof. Peter von Bülow Mohsen Vatandoost

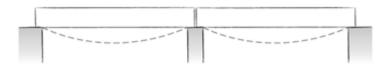
Welcome to Recitation session 02/28 Mohsen Vatandoost {Ph.D., M.Sc., M. Arch}

mohsenv@umich.edu

Office: Room 3122 hours: Fri: 11:30 – 12:30 Mon, Wed: 11:00 - 12:00 walk-ins welcome!

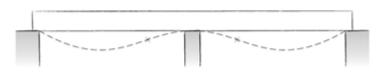
Please feel free to ask questions.

Welcome to Recitation session 02/25


Outline:

- Quick **Recap** of the week
- Provide the solution for the assignment (Homework 6)
- Answering student's questions
- Lab: ----
- **Tower Project:** feedbacks on Preliminary report will be posted shortly.

Please feel free to ask questions.

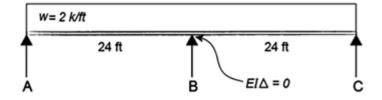

Continuous beams

two spans - simply supported

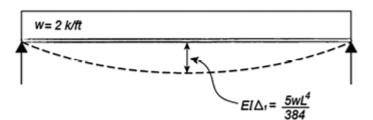
Methods for solving internal forces in Continuous beams:

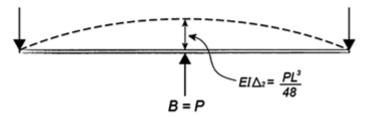
- Deflection Method
- Slope Method
- Three-Moment Theorem

Statically indeterminate:


- Cannot be solved by the three equations of statics alone
- Internal forces (shear & moment) as well as reactions are affected by movement or settlement of the supports

Continuous beams

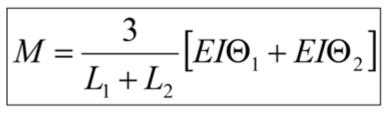

Deflection Method

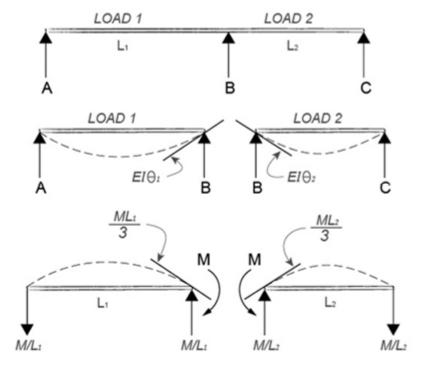

- Two continuous, symmetric spans
- Symmetric Load

Procedure:

- 1. Remove the center support, and calculate the center deflection for each load case as a simple span.
- 2. Remove the applied loads and replace the center support. Set the deflection equation for this case (center point load) equal to the deflection from step 1.
- 3. Solve the resulting equation for the center reaction force. (upward point load)
- 4. Calculate the remaining two end reactions.
- 5. Draw shear and moment diagrams as usual.

$EI\Delta_1 + EI\Delta_2 = 0$

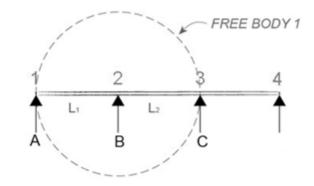

Continuous beams

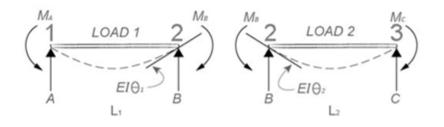

Slope Method

- Two continuous spans
- Non-symmetric loads and spans

Procedure:

- 1. Break the beam into two halves at the interior support, and calculate the interior slopes of the two simple spans.
- 2. Use the Slope Equation to solve for the negative interior moment.
- 3. Find the reactions of each of the simple spans plus the M/L reactions caused by the interior moment.
- 4. Add all the reactions by superposition.
- 5. Draw the shear and moment diagrams as usual.



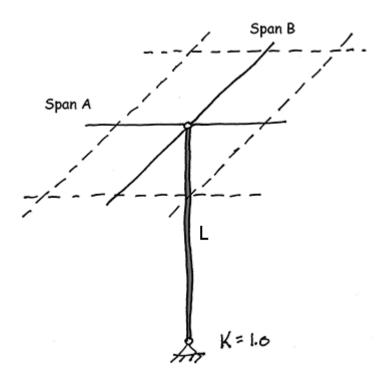


Continuous beams

Three-Moment Theorem

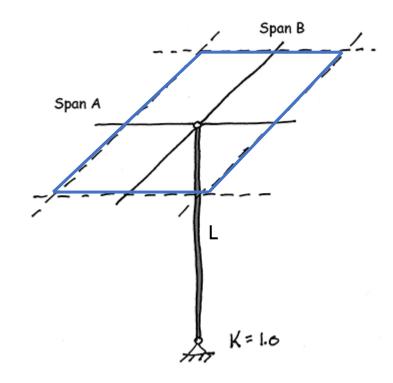
- Any number of spans
- Symmetric or non-symmetric

$$M_{A}L_{1} + 2M_{B}(L_{1} + L_{2}) + M_{C}L_{2} = 6[EI\Theta_{1} + EI\Theta_{2}]$$



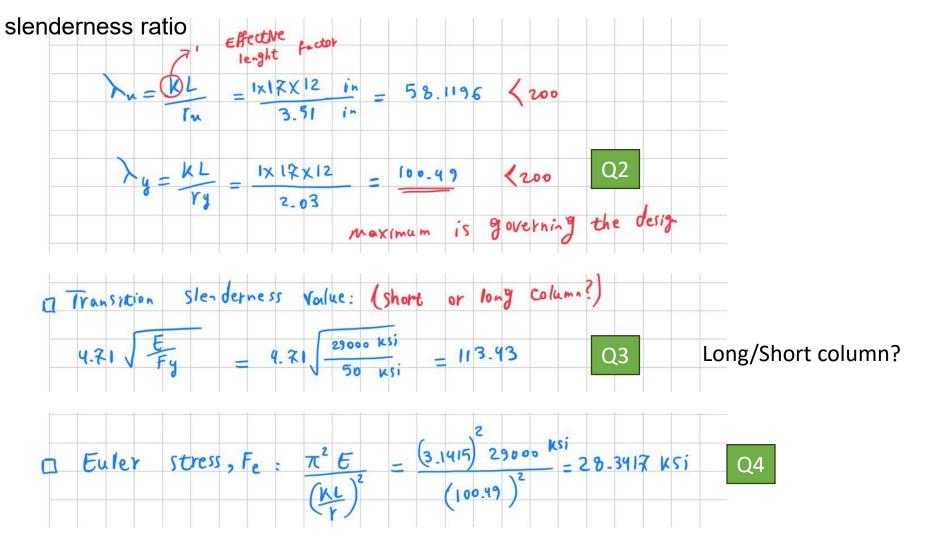
6. Steel Column Analysis

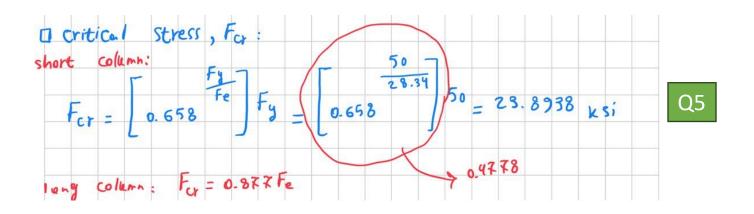
For the given axially loaded steel W-section, determine the maximum floor live load capacity, P LL. Assume the column is pinned top and bottom: K = 1.0, and there is no intermediate bracing. Use AISC-LRFD steel equations to determine phi Pn and the load. E = 29000ksi.

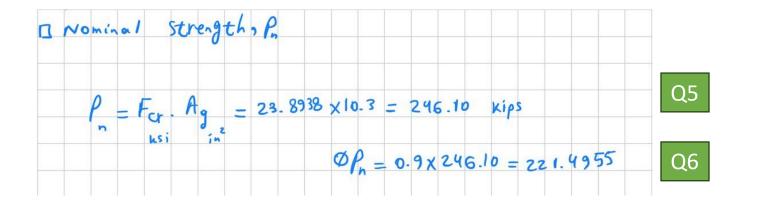

W8X35 50 KSI
50 KSI
34 FT
46 FT
17 FT
18 PSF

• Problem:

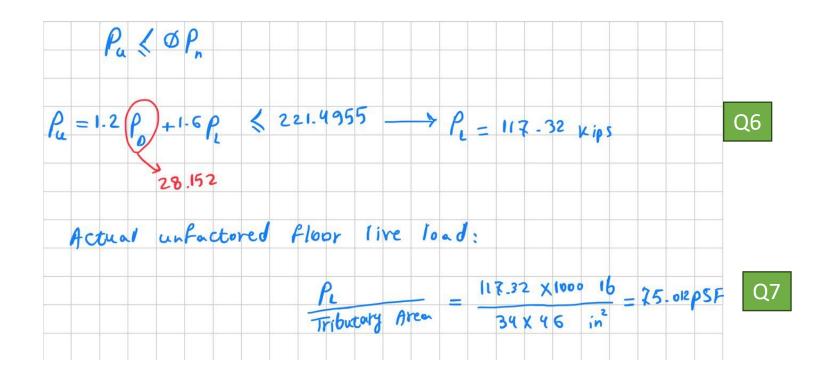
Arch324: STRUCTURES II

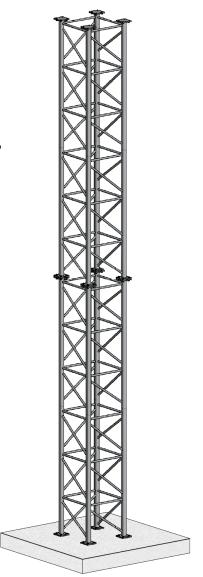

<u>#</u>	Question	Your Response
1	Total unfactored floor dead load on the column	KIPS
2	Controlling slenderness ratio	
3	Transition slenderness value, 4.71(E/Fy)^.5	
4	Euler stress, Fe	KSI
5	Critical stress, Fcr	KSI
6	Nominal strength, Pn	KIPS
7	Factored nominal strength, phi Pn	KIPS
8	UN-factored live load on column (actual total LL)	KIPS
9	Actual unfactored floor live load	PSF


Arch324: STRUCTURES II


Tc Tri	tal ι	Infact y Ar	ored flo en: Spa : 18	or c A y psF	lead loa (Span B	ad on th = 34)	ne colu (46 _	umn 15 (he a	- 2		ner Q1	nt -	ΠS	HN lende N 8X	ernes	S .	r. rg	io : -= 3.5 += 2- q = 1	51 [°] -03 [°]			
			Tab	1.01	1 (000																		
	Ý br	т т		W-	Shap nensior										le 1- W-: Pre	-	ape	es	d)			W	3-W4
	- X	T k Depth,	Web	W- Dir	Shape nensior	es 1s ange	k	Distan		Nom-	Compact Section		Axis X		W- :	Sha	ape	es s	d)		ħ	Tors	3-W4 ional erties
d x two		T k Depth, d		W- Dir	Shap nensior	es ns	k Kdos kdi	K.	ce 7 able Gage	- Nom- inal Wt.	Section Criteria		Axis X S		W- :	Sha	ape	es s	(d) z	r _{ts}	h _o _	Tors	ional
Shape	Area, A	d in.	Web Thickness, <i>t_w</i> in.	W- Dir $\frac{t_w}{2}$ in.	Shape nension Fla Width, <i>b</i> ₁ in.	es ns ange Thickness, t ₁ in.	in. in	k ₁ . in.	7 Work- able Gage in. in.	inal	Section Criteria	<i>1</i> in. ⁴		-X	W-S Pro	Sha	ape rties _{Axis}	es s	2	r _{ts}	<i>h</i> _o	Tors	ional erties
Shape W8×67	Area, A in. ² 19.7	<i>d</i> in. 9.00 9	Web Thickness, <i>t_w</i> 0.570 ⁹ /16	W - Dir $\frac{t_w}{2}$ in. 5/16	Shape nension Fla Width, br in. 8.28 8 ¹ /4	es ns Thickness, t ₁ in. 0.935 ^{15/16}	in. in. 1.33 1 ⁵ /8	<i>k</i> ₁ . in. 3 ^{15/16}	7 Work- able Gage in. in.	inal Wt. Ib/ft 67	Section Criteria $\frac{b_{f}}{2t_{f}}$ $\frac{h}{t_{w}}$ 4.43 11.1	272	S in. ³ 60.4	-X r in. 3.72	W -: Pro	Sha oper / in. ⁴ 88.6	Axis s in. ³ 21.4	Y-Y r in. 2.12	Z in. ³ 32.7	in. 2.43	in. 8.07	Tors Prop J in. ⁴ 5.05	ional erties C _w in. ⁶ 1440
tw Shape W8×67 ×58	Area, A in. ² 19.7 17.1	d in. 9.00 9 8.75 8	Web Thickness, <i>t</i> _w 0.570 ⁹ / ₁₆ 0.510 ¹ / ₂	W - Dir $\frac{t_{w}}{2}$ in. $\frac{5/16}{1/4}$	Shape nension Fla Width, br in. 8.28 8¼4 8.22 8¼4	es ns Thickness, <i>t</i> ₇ in. 0.935 ^{15/16} 0.810 ^{13/16}	in. in 1.33 1 ⁵ /8 1.20 1 ¹ /2	<i>k</i> ₁ <i>in.</i> <i>in.</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i>	T Work-able Gage in. in. 5 ³ /4 5 ¹ /2	inal Wt. Ib/ft 67 58	Section Criteria br 2tr h tw 4.43 11.1 5.07 12.4	272 228	<i>S</i> in. ³ 60.4 52.0	-X in. 3.72 3.65	W -: Pro <u>z</u> in. ³ 70.1 59.8	Sha oper oper <u>in.4</u> 88.6 75.1	Axis 5 in. ³ 21.4 18.3	Y-Y r in. 2.12 2.10	Z in. ³ 32.7 27.9	in. 2.43 2.39	in. 8.07 7.94	Tors Prop J in. ⁴ 5.05 3.33	ional erties C _w in. ⁶ 1440 1180
tw Shape W8×67 ×58 ×48	Area, A in. ² 19.7 17.1 14.1	d in. 9.00 9 8.75 8 8.50 8	Web Thickness, t _w in. 0.570 9/16 8/4 0.510 1/2 1/2 0.400 3/8	W - Dir $\frac{t_w}{2}$ in. ^{5/16} ^{1/4} ^{3/16}	Shap nension Fla Width, br in. 8.28 81/4 8.22 81/4 8.11 81/8	es ns Thickness, t ₇ in. 0.935 ^{15/16} 0.810 ^{13/16} 0.685 ^{11/16}	in. in. 1.33 15/8 1.20 1½ 1.08 13/8	<i>k</i> ₁ <i>in.</i> <i>in.</i> <i>i5/16</i> <i>7/8</i> <i>i3/16</i>	T Workable able Gage in. in. 5 ³ /4 5 ¹ /2	inal Wt. 67 58 48	Section Criteria br 2tr h tw 4.43 11.1 5.07 12.4 5.92 15.9	272 228 184	S in. ³ 60.4 52.0 43.2	-X in. 3.72 3.65 3.61	W -S Pro <i>z</i> in. ³ 70.1 59.8 49.0	Sha oper oper <i>i</i> n.4 88.6 75.1 60.9	Axis Axis 5 in. ³ 21.4 18.3 15.0	Y-Y r in. 2.12 2.10 2.08	Z in. ³ 32.7 27.9 22.9	in. 2.43 2.39 2.35	in. 8.07 7.94 7.82	Tors Prop J in.4 5.05 3.33 1.96	ional erties Cw in. ⁶ 1440 1180 931
tw Shape W8×67 ×58	Area, A in. ² 19.7 17.1	d 9.00 9 8.75 8 8.50 8 8.25 8	Web Thickness, <i>t</i> _w 0.570 ⁹ / ₁₆ 0.510 ¹ / ₂	W - Dir $\frac{t_{w}}{2}$ in. $\frac{5/16}{1/4}$	Shape nension Fla Width, br in. 8.28 8¼4 8.22 8¼4	es ns Thickness, t ₇ in. 0.935 ^{15/16} 0.810 ^{13/16} 0.685 ^{11/16}	in. in 1.33 1 ⁵ /8 1.20 1 ¹ /2	<i>k</i> ₁ <i>in.</i> <i>in.</i> <i>in.</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i>is</i> <i></i>	T Workable Gage in. in. 5 ³ /4 5 ¹ /2	inal Wt. Ib/ft 67 58	Section Criteria br 2tr h tw 4.43 11.1 5.07 12.4	272 228	<i>S</i> in. ³ 60.4 52.0	-X in. 3.72 3.65 3.61 3.53	W -S Pro in. ³ 70.1 59.8 49.0 39.8	Sha oper oper <u>in.4</u> 88.6 75.1	Axis 5 in. ³ 21.4 18.3	Y-Y r in. 2.12 2.10	Z in. ³ 32.7 27.9	in. 2.43 2.39	in. 8.07 7.94	Tors Prop J in. ⁴ 5.05 3.33	ional erties C _w in. ⁶ 1440 1180

TAUBMAN COLLEGE ARCHITECTURE & URBAN PLANNING UNIVERSITY OF MICHIGAN





Tower Project: How to start

Feedbacks on Preliminary report will be posted shortly. Tower Test : March 23

Arch324: STRUCTURES II

Thank you. Enjoy your break! Any question?

Please feel free to ask questions.

Contact: