

Office Hours

- → Office Hours
- → Day: Fridays, 12:00 PM 1:00 PM
- → Location Options:
 - In-person meetings: [2223B]
 - Virtual meetings via Zoom

Please make sure to sign up at least 24 hours in advance to allow for proper scheduling via this link:

https://docs.google.com/forms/d/e/1FAIpQLSdOb4gAc6SoCdsMAZP4zKrn3ecPyGt6dwVahVcOD3EqXGG-oA/viewform?usp=dialog

If the slots are fully booked or if you have a time conflict, please email me directly to find an alternative time (array (array)

Contents

 \rightarrow Summary → Steel column analysis → Steel column design → Problem Set → Problem set 05 (Steel beam design) \rightarrow Lab → Steel Columns → Tower project → Prelim tower report

(We will send out the reviews next Friday, February 28th)

Steel Column Analysis

Leonhard Euler (1707 – 1783)

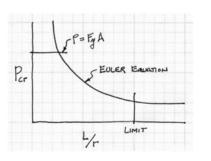
Euler Buckling (elastic buckling)

$$P_{cr} = \frac{\pi^2 AE}{\left(\frac{KL}{r}\right)^2} = \frac{\pi^2 IE}{(KL)^2}$$

$$r = \sqrt{\frac{I}{A}}$$

$$I = Ar^2$$

- A = Cross sectional area (in²)
- E = Modulus of elasticity of the material (lb/in²)
- K = Stiffness (curvature mode) factor
- L = Column length between pinned ends (in.)
- r = radius of gyration (in.)


University of Michigan, TCAUP

$$f_{cr} = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2} \le F_{cr}$$

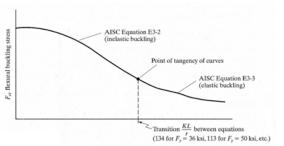
Structures II

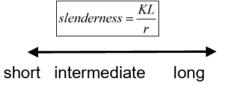
portrait by Emanuel Handmann,1753

Slide 2 of 20

Analysis of Steel Columns

Short columns

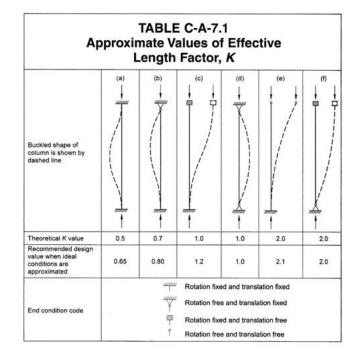

Fail by material crushing Plastic behavior


Intermediate columns

Crush partially and then buckle Inelastic behavior Local buckling – flange or web Flexural torsional buckling - twisting

Long columns Fail in Euler buck

Fail in Euler buckling Elastic behavior


Transition Slenderness $4.71\sqrt{\frac{E}{F_y}}$

University of Michigan, TCAUP Structures II Slide 4 of 20

Steel Column Analysis

Analysis of Steel Columns

Estimate of K:

University of Michigan, TCAUP Structures II Slide 7 of 20

Analysis of Steel Columns pass / fail by LRFD

Data:

- · Column size, length
- Support conditions
- Material properties F_v
- Factored load P.,

Required:

• $P_u \leq ø P_n$ (pass)

- 1. Calculate slenderness ratios: L_c/r_x and L_c/r_y ($L_c = KL$) The largest ratio governs.
- 2. Check slenderness ratio against upper limit of 200 (recommended)
- 3. Calculate transition slenderness $4.71\sqrt{E/Fy}$ and determine column type (short or long)

$$F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y$$
 Short

- 4. Calculate F_{cr} based on slenderness
- 5. Determine $\emptyset P_n$ and compare to P_u $P_n = F_{cr} A_g \qquad \emptyset = 0.9$

6. If
$$P_u \le \emptyset P_n$$
, then OK

$$F_{cr} = 0.877 F_e$$

Long

University of Michigan, TCAUP

Structures II

Slide 11 of 20

Steel Column Design

Design of Steel Columns with AISC Strength Tables

Data:

- Column length
- Support conditions
- Material properties Fy
- Applied design load Pu

Required:

Column Size

- Enter table with height, KL = Lc
- Read allowable load for each section to find the smallest adequate size.
- Tables assume weak axis buckling. If the strong axis controls the length must be divided by the ratio rx/ry
- Values stop in table (black line) at slenderness limit, KL/r = 200

\rfloor	_	,	A١	vail	abl	1a (d e Si ipre	trer essi	ngtl	ı in		F _y =	50 1	csi
W	3				W	-Sha	pes						
Sha				_			WE					_	
lb/	m	6		5		4		4		3		3	
Desi	ign	P_0/Ω_0	o _c P _k	P ₀ /Ω _e		P_0/Ω_0	00Pa	P_0/Ω_0	¢₀Pa	P_0/Ω_0	φ _e P _a	P_0/Ω_0	9,5
		ASD	LRFD	ASD	LRFD	ASD	LRFO	ASD	LRFD	ASD	LRFD	ASD	LRFO
	0	590	888	512	769	422	634	350	526	308	463	273	411
5	6	542	815	470	706	387	581	320	481	281	423	249	374
Effective length, L _e (II), with respect to least radius of gyration,	7 8	526	790 763	455	685	375 361	563 543	309 298	465 448	272	409 394	241 232	362
Ē	8	508		439	660					262	394	232	
56	10	488 467	733	422	634	347	521 497	285	429 409	239	359	211	333
*													
4	11	444	668	384	576	314	473	258	388	226	340	200	301
2	12	421	633	363	546	297	447	243	366	213	321	189	283
8	13	397	597	342	514	280	421 394	228	343	187	301 281	177 165	266
2	14	373	560	321	482 450	262	367	213	321 298	174	261	153	230
¥	15	348	523	299		244						100	
9	16	324	487	278	418	226	340	183	275	160	241	141	212
5	17	300	450	257	386	209	314	169	253	147	221	130	195
뜋	18	276	415	236	355	192	288	154	232	135	203	118	178
si l	19	253	381	216	325	175	264	141	211	123	184	108	162
	20	231	347	197	296	159	239	127	191	111	166	97.2	146
2	22	191	287	163	244	132	198	105	158	91.5	138	80.3	121
5	24	160	241	137	205	111	166	88.2	133	76.9	116	67.5	101
8	26	137	205	116	175	94.2	142	75.2	113	65.5	98.5	57.5	86.5
ā I	28	118	177	100	151	81.2	122	64.8	97.4	56.5	84.9	49.6	74.5
2	30	103	154	87.5	131	70.7	106	56.5	84.9	49.2	74.0	43.2	64.9
=	32 34	90.3	136	76.9	116	62.2	93.5	49.6	74.6	43.3	65.0	38.0	57.1
	34	79.9	120	68.1	102	Propert	82.8	44.0	66.1		_		_
P _{en} , kips		126	190	102	153	72.0	108	57.2	85.9	45.9	68.9	39.4	59.1
P _{ete} , Kips P _{ete} , kip/r		19.0	28.5	17.0	25.5	13.3	20.0	12.0	18.0	10.3	15.5	9.50	14.3
P _{ab.} Kips		507	761	363	546	174	262	127	192	81.1	122	63.0	94.7
Pa, kips		164	246	123	185	87.8		58.7	88.2	45.9	68.9	35.4	53.2
		104	7.49	160	7.42	07.70	7.35	30.7	7.21	40.0	7.17	30.4	7.18
Lo. A.		١,	7.69	7.42 41.6		35.2		29.9		27.0		24.8	
A _p , in. ²			19.7	1	17.1	14.1		11.7		10.3		9.13	
le in."			272 228			184		146		127		110	
√y, in.4			38.6	1 7	75.1	60.9		49.1		42.6		37.1	
r _{jr.} in.			2.12			2.10 2			2.04	2.03		2.02	
I_2/I_2		1.75		1.74			1.74		1.73	1.78			1.72
ParL2/10*, k-in.2		7790		6530		521		41		36		315	
P _{ty} L _c ² /10 ⁴ , k-in. ² 2540			215		174		14		123	20	108	SU .	
ASI	0	LRI	0	Note: H	leavy line	indicates	Lolly eq.	así to or p	prestor th	an 200.			
$\Omega_c = 1$	1.67	0,-=	0.90										

DESIGN OF COMPRESSION MEMBERS

University of Michigan, TCAUP Structures II Slide 2 of 31

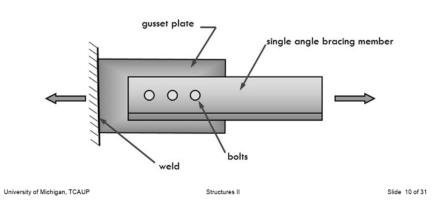
Steel Connections Shop vs. Field Connections

Shop Connections:

- · Welding preferably performed in the shop as opposed to the field due to controlled environment
- Members can be positioned for more economical welding (welding upside down is difficult)
- · Welding may have an equipment advantage in the
- · Shops use both welding and bolting

Field Connections:

- · Bolting easily performed in the field and generally preferred when possible
- · Bolting provides a method to erect the members and release the crane hook quickly

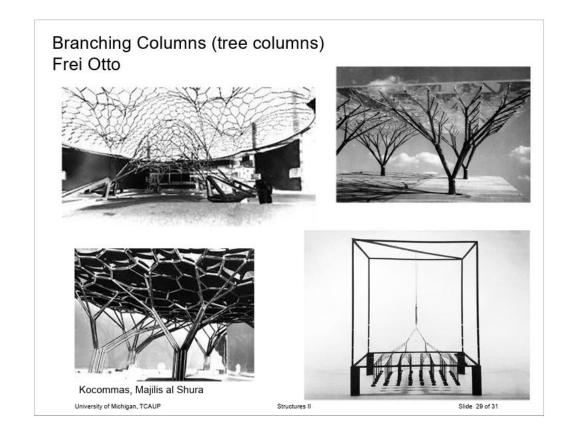


University of Michigan, TCAUP Structures II Slide 7 of 31

Connections

Tension Connection – Angle Failure example

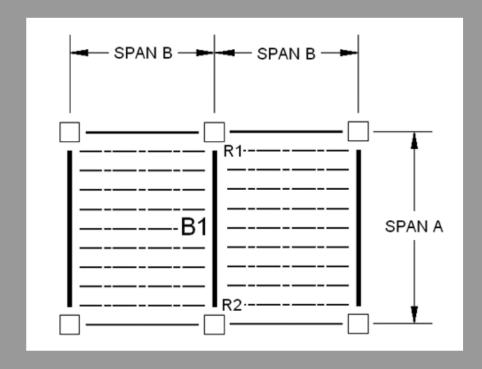
- 1. Tensile Yielding
- 2. Tensile Rupture
- 3. Block Shear
- 4. Bearing and Tearout at Bolt Holes
- 5. Bolt Shear
- 6. Bearing and Tearout at Bolt Holes
- 7. Block Shear
- 8. Tensile Rupture
- 9. Tensile Yielding
- 10. Tension Rupture in Weld


Steel Frame Construction

University of Michigan - North Quad

University of Michigan, TCAUP Structures II Slide 25 of 31

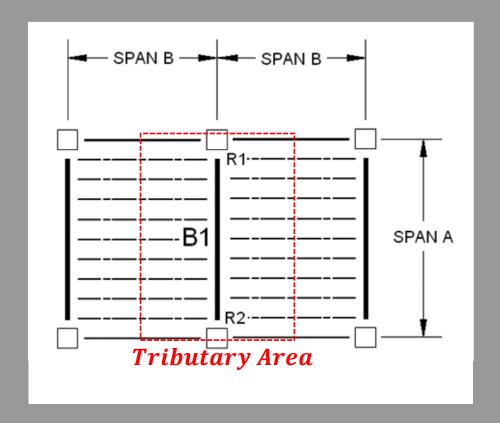
Steel Frame Construction



5. Steel Beam Design

Choose the lightest steel W-section to support the applied dead and live floor loads on Beam B1. Choose a steel W-section from AISC Table 3-2 (posted on Canvas). For the selection of the beam, neglect selfweight (for loads marked with *). After selecting the lightest section from Table 3-2, revise the DL to include the beam selfweight. Check that the final Mu including selfweight is less than the beam strength, phi Mn. Assume the beam is fully braced, Lb < Lp.

DATASET: 1 -23-	
Fy	50 KSI
Span A	27 FT
Span B	14 FT
Floor Dead Load	19 PSF
Floor Live Load	90 PSF

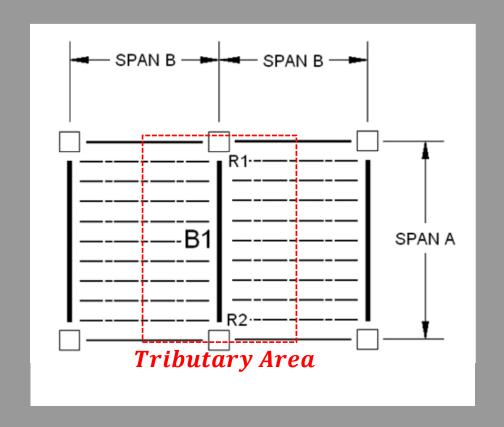

#Q1: The unfactored floor dead load on beam B1 (neglecting selfweight), w_DL*

5. Steel Beam Design

Choose the lightest steel W-section to support the applied dead and live floor loads on Beam B1. Choose a steel W-section from AISC Table 3-2 (posted on Canvas). For the selection of the beam, neglect selfweight (for loads marked with *). After selecting the lightest section from Table 3-2, revise the DL to include the beam selfweight. Check that the final Mu including selfweight is less than the beam strength, phi Mn.

Assume the beam is fully braced, Lb < Lp.

DATASET: 1 -23-	
Fy	50 KSI
Span A	27 FT
Span B	14 FT
Floor Dead Load	19 PSF
Floor Live Load	90 PSF


#Q2: The unfactored floor live load on the beam, w_LL

5. Steel Beam Design

Choose the lightest steel W-section to support the applied dead and live floor loads on Beam B1. Choose a steel W-section from AISC Table 3-2 (posted on Canvas). For the selection of the beam, neglect selfweight (for loads marked with *). After selecting the lightest section from Table 3-2, revise the DL to include the beam selfweight. Check that the final Mu including selfweight is less than the beam strength, phi Mn.

Assume the beam is fully braced, Lb < Lp.

DATASET: 1 -23-	
Fy	50 KSI
Span A	27 FT
Span B	14 FT
Floor Dead Load	19 PSF
Floor Live Load	90 PSF

$$W_{LL} = Floor_{LL} \left(\frac{Tributary Area}{spanA} \right) = 90 \left(\frac{378}{27} \right) = 1260 \text{ PLF}$$

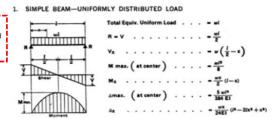
#Q3: The total factored design load on the beam (neglecting selfweight), wu*

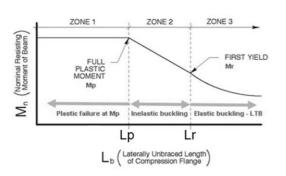
5. Steel Beam Design

Choose the lightest steel W-section to support the applied dead and live floor loads on Beam B1. Choose a steel W-section from AISC Table 3-2 (posted on Canvas). For the selection of the beam, neglect selfweight (for loads marked with *). After selecting the lightest section from Table 3-2, revise the DL to include the beam selfweight. Check that the final Mu including selfweight is less than the beam strength, phi Mn. Assume the beam is fully braced, Lb < Lp.

DATASET: 1 -23-	
Fy	50 KSI
Span A	27 FT
Span B	14 FT
Floor Dead Load	19 PSF
Floor Live Load	90 PSF

Procedure - Analysis of Steel Beams – for Zone 1 $L_b < L_p$ Pass/Fail


Structures II


Given: yield stress, steel section, loading, bracing (L_b)

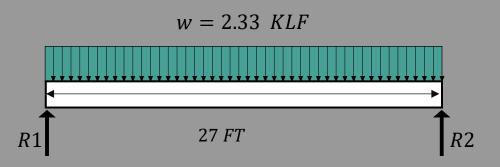
Find: pass/fail of section

- Calculate the factored design load w_u w_u = 1.2w_{DI} + 1.6w_{LI}
- Determine the design moment M_u. M_u will be the maximum beam moment using the factored loads
- 3. Insure that $L_b < L_p$ (zone 1) $L_p = 1.76 r_y \sqrt{E/Fy}$
- Determine the nominal moment, Mn M_n = F_y Z_x (look up Z_x for section)
- 5. Factor the nominal moment $\phi M_n = 0.90 M_n$
- 6. Check that M_u < øM_n
- 7. Check shear
- 8. Check deflection

University of Michigan, TCAUP

Slide 6 of 19

$$W_{u*} = 1.2 W_{DL} * + 1.6 W_{LL} * = 1.2(266) + 1.6 (1260) = 2335.2 \text{ PLF} = 2.3352 \text{ KLF}$$


#Q4: The factored design moment (neglecting selfweight), Mu* #Q5: The nominal bending moment (neglecting selfweight), Mn*

5. Steel Beam Design

Choose the lightest steel W-section to support the applied dead and live floor loads on Beam B1. Choose a steel W-section from AISC Table 3-2 (posted on Canvas). For the selection of the beam, neglect selfweight (for loads marked with *). After selecting the lightest section from Table 3-2, revise the DL to include the beam selfweight. Check that the final Mu including selfweight is less than the beam strength, phi Mn.

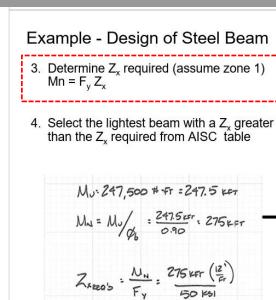
Assume the beam is fully braced, Lb < Lp.

DATASET: 1 -23-	
Fy	50 KSI
Span A	27 FT
Span B	14 FT
Floor Dead Load	19 PSF
Floor Live Load	90 PSF

$$M_{u*} = \frac{W_{u*}L^2}{8} = \frac{2.33 (27)^2}{8} = 212.79 K - FT$$

$$\varphi M_{n*} = M_{u*} = 0.9 \times M_{n*} = 212.79 \rightarrow M_{n*} = 236.41 \ K - FT \times \frac{12 \ IN}{1 \ FT} = 2837.268 \ K - IN$$

 $F_{V} = 50 \text{ ksi}$


Structures II

Problem Set 05

#Q6: The plastic modulus of the section (neglecting selfweight), Zx*

#Q7: The nominal depth of the lightest passing W-section from Zx table (include selfweight)

DATASET: 1 -23-	
Fy	50 KSI
Span A	27 FT
Span B	14 FT
Floor Dead Load	19 PSF
Floor Live Load	90 PSF

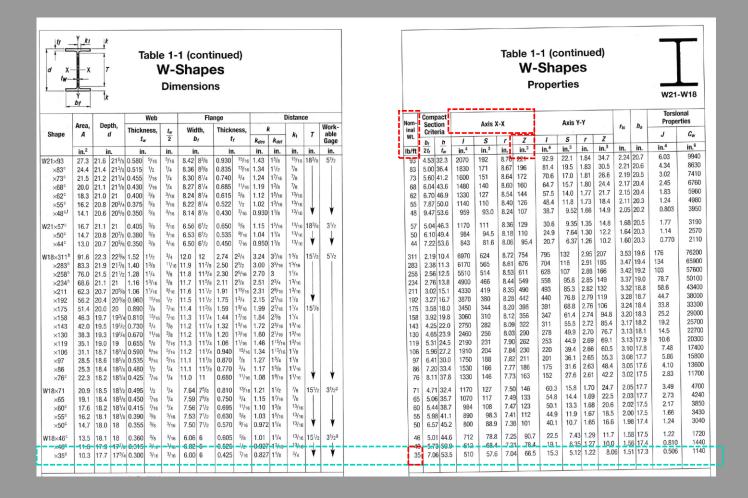
Zx REGIO : 66 M3

SELECT WIBX35

University of Michigan, TCAUP

Shape	Z _x	M_{px}/Ω_b kip-ft	kip-ft	M_{rx}/Ω_b kip-ft	kip-ft	BF/Ω_b kips	φ _b BF kips	L _p	L _r	I _X	V_{nx}/Ω_{v} kips	φ _ν V _{nx} kips LRFD
	in.3	ASD	LRED	_ASD_		CONTRACTOR AND ADDRESS.	LRFD	ft	ft	in.4	106	159
W18×35	66.5	166	249	101	151	8.14	12.3	4.31	12.3 22.4	510 348 -	- 81-1-	122
W12×45	64.2	160	241	101	151	3.80	5.80	0.89	15.2	448	93,8	141
W16×36	64.0	160	240	98.7	148	6.24	9.36	5.37	0.000	385	87.4	131
W14×38	61.5	153	231	95.4	143	5.37	8.20	5.47 8.97	16.2 31.6	272	68.0	102
W10×49	60.4	151	227	95.4	143	2.46	3.71		41.6	228	89.3	134
W8×58	-59.8	149	224	90.8	137	1.70	2.55	7.42	21.1	307	70.2	105
W12×40	57.0	142	214	89.9	135	3.66	5.54	6.85	26.9	248 -	70.7	105
W10×45	54.9	137	206	ชว.ช	129	4.59	3.69	7.10	20.9	240		100
W14×34	54.6	136	205	84.9	128	5.01	7.55	5.40	15.6	340	79.8	120
W16×31	54.0	135	203	82.4	124	6.86	10.3	4.13	11.8	375	87.5	131
W12×35	51.2	128	192	79.6	120	4.34	6.45	5.44	16.6	285	75.0	113
W8×48	49.0	122	184	75.4	113	1.67	2.55	7.35	35.2	184	68.0	102
W14×30	47.3	118	177	73.4	110	4.63	6.95	5.26	14.9	291	74.5	112
W10×39	46.8	117	176	73,5	111	2.53	3.78	6.99	24.2	209	62.5	93.7
W16×26 ^v	44.2	110	166	67.1	101	5.93	8.98	3.96	11.2	301	70.5	106
W12×30	43.1	108	162	67.4	101	3.97	5.96	5.37	15.6.	238	64.0	95.9
W14×26	40.2	100	151	61.7	92.7	5.33	8.11	3.81	11.0	245	70.9	106
W8×40	39.8	99.3	149	62.0	93.2	1.64	2.46	7.21	29.9	146	59.4	89.1
W10×33	38.8	96.8	146	61.1	91.9	2.39	3.62	6.85	21.8	171	56.4	84.7
W12×26	37.2	92.8	140	58.3	87.7	3.61	5.46	5.33	14.9	204	56.1	84.2
W10×30	36.6	91.3	137	56.6	85.1	3.08	4.61	4.84	16.1	170	63.0	94.5
W8×35	34.7	86.6	130	54.5	81.9	1.62	2.43	7.17	27.0	127	50.3	75.5
W14×22	33.2	82.8	125	50.6	76.1	4.78	7.27	3.67	10.4	199	63.0	94.5
W10×26	31.3	78.1	117	48.7	73.2	2.91	4.34	4.80	14.9	144	53.6	80.3
W8×311	30.4	75.8	114	48.0	72.2	1.58	2.37	7.18	24.8	110	45.6	68.4
W12×22	29.3	73/1	110	44.4	66.7	\$500 BSS 95000	7.06	3.00	9.13	156	64.0	95.9
W8×28	27.2	67,9	102	42.4	63.8	1.67	2.50	5.72	21.0	98.0		68.9
₩10×22	26.0	64,9	97.5	40.5	60.9	2.68	4.02	4.70	13.8	118	49.0	73.4
W12×19	24.7	61.6	92.6	37.2	55.9	4.27	6.43	2.90	8.61	130	57.3	86.0
W8×24	23.1	57.6	86.6	36.5	54.9	1.60	2.40	5.69	18.9	82.7	38.9	58.3
₩10×19	21.6	53.9	81.0	32.8	49.4	3.18	4.76		9.73	96.3		76.5
W8×21	20.4	50.9	76.5	31.8	47.8	1.85	2.77	4.45	14.8	75.3	41.4	62.1
ASD	LRFD	† Shape	exceeds	compact	limit for fle	exure with	$F_{y} = 50 \text{ ks}$	si.	-15		with $F_y = 50$	de e

Table 3-2 (continued)

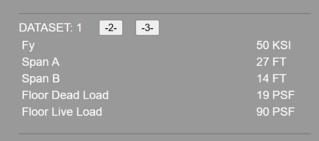

W-Shapes

 $Z_x = \frac{M_{n*}}{F_y} = \frac{2837.268}{50} = 56.74 IN^3$

From the table 3-2, the min beam size is W 18×35

#Q8: The weight of the lightest passing W-section from Zx table

#Q9: The plastic modulus of the section for the chosen section, Zx



From the table 1-1, nominal $W_t=35\ lb/FT$

From the table 1 - 1, $Z_x = 66.5 IN^3$

#Q10: The revised unfactored dead load on the beam (including selfweight), w_DL

#Q11: The total factored design load on the beam (including selfweight), wu

$$W_{DL} = W_{DL*} + W_t(beam\ self\ weight) = 266 + 35 = 301\ PLF$$

$$W_u = 1.2\ W_{DL} + 1.6\ W_{LL} = 1.2(301) + 1.6(1260) = 2377.2\ PLF = \textbf{2}.\, \textbf{3772}\ \textbf{KLF}$$

#Q12: The factored design moment (including selfweight), Mu in KIP-FT

#Q13: The factored design moment (including selfweight), Mu in KIP-IN

DATASET: 1 -23-	
Fy	50 KSI
Span A	27 FT
Span B	14 FT
Floor Dead Load	19 PSF
Floor Live Load	90 PSF

#Q14: The nominal factored bending moment for the chosen section, phi Mn

$$M_u = \frac{W_u L^2}{8} = \frac{2.377 (27)^2}{8} = 216.62 K - FT \times \frac{12 IN}{1 FT} = 2599.44 K - IN$$

$$\varphi M_n = 0.9(F_y \times Z_x) = 0.9(50 \times 66.5) = 2992.5 K - IN$$

Note: For Q14, we are asked to find φM_n of the beam we have selected, not what we calculated in design

Lab04

 Structures II
 Name 1

 Arch 324
 Name 2

 Name 3
 Name 3

Steel Columns

Descriptio

This project gives the opportunity to identify steel sections and determine their properties and strength using the AISC tables.

Goals

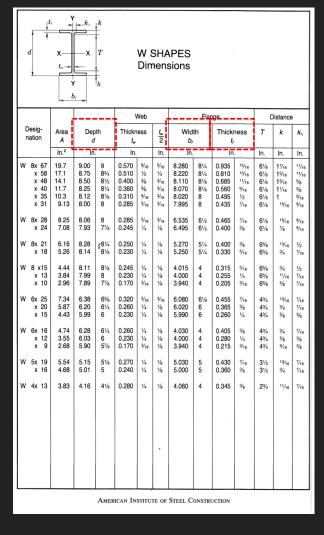
To identify a steel section based on dimensions.

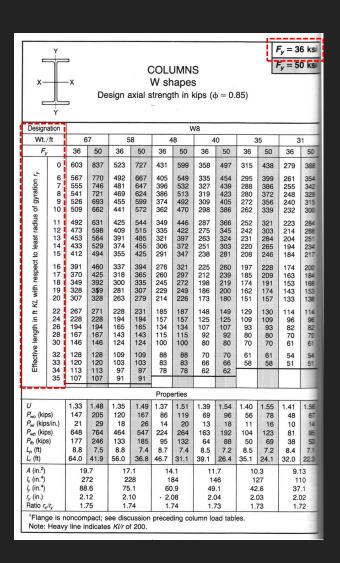
To determine the sectional properties using AISC table

To determine the load capacity based on AISC column table.

Procedure

- 1. Measure the steel column section shown below. (your GSI will tell you which one)
- 2. Based on the sectional dimensions find the shape in the steel table.
- Use the column table and the given height to find the load capacity. Both columns are A-36 steel (Fy = 36 ksi).





L= 15 ft. - 4 in.

L = 13 ft. 4 in.

Section: W ___ x ____ Design Strength ____ kip

Lab04

→ Group work instructions

Please form groups of 2 to 4 students.

Please do not forget to write all group members' names on both sheets.

Return the completed sheets to me at the end of the session.

Please ensure that you attend the recitation sessions.

If you are unable to attend a session, send me an email so that we can discuss how to proceed. *Email: arfazel@umich.edu*