ARCHITECTURE 324 Structures II

Recitation 01

DESCRIPTION

Sections 04&05

Instructor Peter von Buelow

Office Hours

\rightarrow Office Hours

- \rightarrow Day: Fridays, 12:00 PM 1:00 PM
- \rightarrow Location Options:
 - In-person meetings: [2223B]
 - Virtual meetings via Zoom

Please make sure to sign up at least 24 hours in advance to allow for proper scheduling via this link:

https://docs.google.com/forms/d/e/1FAIpQLSdOb4gAc6SoCdsMAZP4zKrn3ecPyGt6dwVahVcOD3EqXGG-oA/viewform?usp=dialog

If the slots are fully booked or if you have a time conflict, please email me directly to find an alternative time (arfazel@umich.edu)

Contents

\rightarrow Summary

- → Wood Properties
- \rightarrow Wood Beam Analysis
- \rightarrow Problem Set
 - \rightarrow Problem set 01 (wood beam analysis)
- \rightarrow Lab
 - \rightarrow Lab 01 (wood beams)

Wood types

Standards & Manuals

Wood Properties

FREE WATER

BOUND WATER -

GREEN SIZ SIZE AFTER SHRINKAGE EMC

LONGITU DIN AL SHRINKAGE

TANGENTIAL SHRINKAGE

Moisture Content

- MC = %water to oven dry wood
- In a living tree, MC can be 200%
- "free water" is contained in cell cavity
- "bound water" is within the cell wall
- Fiber Saturation Point (FSP) is the MC at 0% free and 100% bound water FSP is about 30%
- Equilibrium Moisture Content (EMC) is reached in service

Shrinkage

- Shrinkage begins once MC<FSP
- Shrinkage is not the same in each direction
- Uncontrolled shrinkage results in splits

Shrinkage

- · Is different in different directions
- Longitudinal is the least
- · Across the grain is more
- · Circumferential is greatest

Cut

- · Plain Sawn most economical and common
- Quarter Sawn less warping
- Rift Sawn least warping but more waste

Wood Properties

Yard Dry

- · Initial free water is removed
- stacked separated by 1" stickers
- · Air dried outdoors or under cover
- Dry rate depends on humidity and circulation
- · Coating ends reduces splitting
- Takes ~ weeks to months

Kiln Dry - KD

- Enclosed in humidity controlled chamber
- Introduction of controlled heat
- Air circulation
- Dried to < %18

Heat Treated - HT

- temperature raised to 53° C (127° F) for 30 min.
- kills organisms
- · requirement for imports

GRADING

Visual Grading

Each member is assessed for visual defects. (splits, knots, density, etc.)

Machine Evaluated Lumber (MEL)

Each member is assessed for density using x-ray technology.

Machine Stress Rated (MSR)

Each member is stressed by running it through rollers which measure the deflection and stiffness. The E modulus in bending can be calculated from the deflection.

1. Wood Beam Analysis

Analyze the given 4x dimensioned lumber beam to determine if it passes or fails the NDS code criteria. The beam carries both dead and live floor load plus its own selfweight. Check the actual shear and bending stresses against the factored allowable stresses including all applicable factors from the NDS. Load duration is based on the live load (CD = 1.0). Assume normal temperature, and no incising (Ct = Ci = 1.0). Find the beam selfweight including the given moisture content. The beam is braced at the ends and the C.L. (meets criteria in 4.4.1) so CL = 1.0.

DATASET: 2 -13-	
	NORTHERN
Wood Species	WHITE
	CEDAR
	Select
wood Grade	Structural
Span A	14 FT
Span B	10 FT
Nominal Depth of Beam d	9 IN
Nominal Depth of Beam, u	0 111
Moisture Content, m.c.	15 %
Floor DL	9 PSF
Floor LL	35 PSF

#Q1: Tabulated Allow. Bending Stress, Fb#Q2: Tabulated Allow. Shear Stress, Fv#Q3: Tabulated Wood Dry Density

DATASET: 2 -13-	
Wood Species	NORTHERN WHITE CEDAR
Wood Grade	Select Structural
Span A	14 FT
Span B	10 FT
Nominal Depth of Beam, d	8 IN
Moisture Content, m.c.	15 %
Floor DL	9 PSF
Floor LL	35 PSF

According to the table, for "Northern White Cedar grade, select structural, we have the following:

 $F_{b} = 775 PSI$

$$F_V = 120 PSI$$

G = 0.31

Table 4AReference Design Values for Visually Graded Dimension Lumber(Cont.) $(2^{"} - 4^{"} \text{ thick})^{1,2,3}$

(All species except Southern Pine — see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

		USE	WITH TAI	BLE 4A A	DJUSTMENT	FACTORS				
		Design values in pounds per square inch (psi)								
Species and commercial	Size		Tension	Shear	Compression	Compression			Specific	Grading
grade	classification	Bending	to grain	to grain	to grain	to grain	Modulus o	f Elasticity	Gravitv ⁴	Agency
		F. Ŭ	F₊	F.	E.	F	E	Emin	G	
MIXED MAPLE				المحت في مع	· 01		_	-100		
Select Structural		1,000	600	195	620	875	1,300,000	470,000		
No. 1	Oll Quuddan	725	425	195	620	700	1,200,000	440,000		
No. 2	2 & wider	700	425	195	620	550	1,100,000	400,000		
No. 3		400	250	195	620	325	1,000,000	370,000	0.55	
Stud	2" & wider	550	325	195	620	350	1,000,000	370,000	0.55	NELWA
Construction		800	475	195	620	725	1,100,000	400,000		
Standard	2" - 4" wide	450	275	195	620	575	1,000,000	370,000		
Utility		225	125	195	620	375	900,000	330,000		
NORTHERN WHITE CEDAR										
Select Structural		775	450	120	370	750	800,000	290,000		
No. 1	2" & wider	575	325	120	370	600	700,000	260,000		
No. 2		550	325	120	370	475	700,000	260,000		
No. 3		325	175	120	370	275	600,000	220,000	0.21	
Stud	2" & wider	425	250	120	370	300	600,000	220,000	0.31	NELWA
Construction		625	375	120	370	625	700,000	260,000		
Standard	2" - 4" wide	350	200	120	370	475	600,000	220,000		
Utility		175	100	120	370	325	600,000	220,000		
RED MAPLE										
Select Structural		1,300	750	210	615	1,100	1,700,000	620,000		
No. 1		925	550	210	615	900	1,600,000	580,000		
No. 2	2" & wider	900	525	210	615	700	1,500,000	550,000		
No. 3		525	300	210	615	400	1,300,000	470.000		
Stud	2" & wider	700	425	210	615	450	1,300,000	470,000	0.58	NELMA
Construction		1.050	600	210	615	925	1,400,000	510,000		
Standard	2" - 4" wide	575	325	210	615	725	1,300,000	470,000		
Utility		275	150	210	615	475	1,200,000	440,000		

#Q4: Total Actual Applied Point Load, P

Steps:

- 1- Find the load path
- 2- Find the tributary area
- 3- Calculate the live load and dead load

Quick refresher

Load Paths (slabs)

One-way slabs should span the shortest direction.

Two-way slabs span in both directions. Aspect ratios should be between 1:1 and 2:1. The load path divides at 45° from corner.

Quick refresher

Tributary Area

The tributary area is an **area that** corresponds to the load on a member.

If geometry and loading is symmetric, then load paths and reactions are also symmetric.

12

Quick refresher

Tributary Area

The tributary area is an **area that** corresponds to the load on a member.

Each member has a tributary area that can be used to find the total load on that member.

#Q4: Total Actual Applied Point Load, P

Span A	14 FT
Span B	10 FT
Nominal Depth of Beam, d	8 IN
Moisture Content, m.c.	15 %
Floor DL	9 PSF
Floor LL	35 PSF

Tributary Area = $SpanA \times SpanB/2$ = $14 \times \frac{10}{2} = 70 FT^2$ **Total Load _beam A** = $70 \times (DL + LL) = 70(9 + 35) = 3080 LBS$

Point load P = Load on beam
$$\frac{A}{2} = \frac{3080}{2} = 1540 LBS$$

#Q5: Wood Density (Including M.C.)

Span A	14 FT
Span B	10 FT
Nominal Depth of Beam, d	8 IN
Moisture Content, m.c.	15 %
Floor DL	9 PSF
Floor LL	35 PSF

$$Density = 62.4 \left[\frac{G}{1 + G(0.009)m.c.} \right] \left[1 + \frac{m.c.}{100} \right]$$

$$G = 0.31, m.c = 15\% \rightarrow$$

$$Density = 62.4 \left[\frac{0.31}{1 + 0.31(0.009) 15} \right] \left[1 + \frac{15}{100} \right]$$

$$= 21.352 PCF$$

3.1 Section Properties of Sawn Lumber and Structural Glued Laminated Timber

3.1.1 Standard Sizes of Sawn Lumber

Details regarding the dressed sizes of various species of lumber in the grading rules of the agencies which formulate and maintain such rules. The dressed sizes in Table 1A conform to the sizes set forth in U.S. Department of Commerce Voluntary Product Standard PS 20-10 (American Softwood Lumber Standard). While these sizes are generally available on a commercial basis, it is good practice to consult the local lumber dealer to determine what sizes are on hand or can be readily secured.

Dry lumber is defined as lumber which has been seasoned to a moisture content of 19% or less. Green lumber is defined as lumber having a moisture content in excess of 19%.

3.1.2 Properties of Standard Dressed Sizes

Certain mathematical expressions of the properties or elements of sections are used in design calculations for various member shapes and loading conditions. The section properties for selected standard sizes of boards, dimension lumber, and timbers are given in Table 1B. Section properties for selected standard sizes of structural glued laminated timber are given in Tables 1C and 1D.

3.1.3 Definitions

Structural Glued Laminated Timber

Figure 1A

NEUTRAL AXIS, in the cross section of a beam, is the line on which there is neither tension nor compression stress.

Cross Section

Dimensions for Rectangular

MOMENT OF INERTIA, I, of the cross section of a beam is the sum of the products of each of its elementary areas multiplied by the square of their distance from the neutral axis of the section.

SECTION MODULUS, S, is the moment of inertia divided by the distance from the neutral axis to the extreme fiber of the section.

CROSS SECTION is a section taken through the member perpendicular to its longitudinal axis.

The following symbols and formulas apply to rectangular beam cross sections:

- X-X = neutral axis for edgewise bending (load applied to narrow face)
- Y-Y = neutral axis for flatwise bending (load applied to wide face)
- b = breadth (thickness) of rectangular bending member, in.
- d = depth (width) of rectangular bending member, in,
- A = bd = area of cross section, in.2
- c = distance from neutral axis to extreme fiber of cross section, in.
- $I_x = bd^3/12 =$ moment of inertia about the X-X axis, in.4
- $I_v = db^3/12$ = moment of inertia about the Y-Y axis, in.4
- $r_x = \sqrt{I_x/A} = d/\sqrt{12}$ = radius of gyration about the X-X axis, in,
- $r_v = \sqrt{I_v / A} = b / \sqrt{12}$ = radius of gyration about the Y-Y axis, in,
- $S_{z} = I_{z}/c = bd^{2}/6$ = section modulus about the X-X axis, in.3
- $S_v = I_v/c = db^2/6$ = section modulus about the Y-Y axis, in.3

#Q6: Beam Selfweight (Including M.C.), w

Span A	14 FT
Span B	10 FT
Nominal Depth of Beam, d	8 IN
Moisture Content, m.c.	15 %
Floor DL	9 PSF
Floor LL	35 PSF

 $PLF = Volume \times Density \times 1 Ft$ $PLF = \left(25.38 IN^{2} \times \frac{1 FT}{144 IN^{2}} \times 21.352 \times 1 FT\right)$

Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber X-X AXIS Y-Y AXIS Moment Standard Area Nomen Approximate weight in pounds per linear foot (lbs/ft) Nominal Dressed of Section of Section of of piece when density of wood equals: Size (S4S) Modulus Modulus Size Section Inertia Inertia 25 lbs/ft³ 30 lbs/ft³ 35 lbs/ft³ 40 lbs/ft³ 45 lbs/ft³ 50 lbs/ft³ bxd b x d Α Sxx Syy Ixx l_{yy} in.3 in.2 in.³ in.4 in.4 in. x in. Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5) 2 x 3 1-1/2 x 2-1/2 3.750 1.56 1.953 0.938 0.703 0.651 0.781 0.911 1.042 1.172 1.302 1-1/2 x 3-1/2 2 x 4 5.250 3.06 5.359 1.313 0.984 0.911 1.094 1.276 1.458 1.641 1.823 1-1/2 x 4-1/2 6.750 1.172 1.875 2.344 2 x 5 5.06 11.39 1.688 1.266 1.406 1.641 2.109 2.063 2.292 2 x 6 1-1/2 x 5-1/2 8.250 7.56 20.80 1.547 1.432 1.719 2.005 2.578 2.865 47.63 2.719 1.888 3.021 2 x 8 1-1/2 x 7-1/4 10.88 13.14 2.039 2.266 2.643 3.398 3.776 2 x 10 1-1/2 x 9-1/4 13.88 21.39 98.93 3.469 2.602 2.409 2.891 3.372 3.854 4.336 4.818 2 x 12 1-1/2 x 11-1/4 16.88 31.64 178.0 4.219 3.164 2.930 3.516 4.102 4.688 5.273 5.859 3.727 3.451 5.521 2 x 14 1-1/2 x 13-1/4 19.88 43.89 290.8 4.969 4.141 4.831 6.211 6.901 3 x 4 4.557 1.519 1.823 2.127 2-1/2 x 3-1/2 8.75 5.10 8.932 3.646 2.431 2.734 3.038 3 x 5 2-1/2 x 4-1/2 11.25 8.44 18.98 4.688 5.859 1.953 2.344 2.734 3.125 3.516 3.906 2-1/2 x 5-1/2 13.75 12.60 5.729 7.161 2.387 2.865 3.342 3.819 4.774 3 x 6 34.66 4.297 3 x 8 2-1/2 x 7-1/4 18.13 21.90 79.39 7.552 9.440 3.147 3.776 4.405 5.035 5.664 6.293 23.13 35.65 9.635 6.424 3 x 10 2-1/2 x 9-1/4 164.9 12.04 4.015 4.818 5.621 7.227 8.030 2-1/2 x 11-1/4 28.13 52.73 296.6 11.72 14.65 4.883 5.859 6.836 7.813 8.789 9.766 3 x 12 2-1/2 x 13-1/4 33.13 73.15 484.6 13.80 17.25 5.751 6.901 8.051 9.201 10.35 3 x 14 11.50 <u>3 x 16</u> 38.13 738.9 15.89 6.619 7.943 10.59 2-1/2 x 15-1/4 96.90 19.86 9.266 11.91 13.24 4 x 4 12.51 2.552 2.977 4.253 3-1/2 x 3-1/2 12.25 7.15 12.51 7.146 2.127 3.403 3.828 4 x 5 3-1/2 x 4-1/2 15.75 11.81 26.58 9.188 16.08 2.734 3.281 3.828 4.375 4.922 5.469 3-1/2 x 5-1/2 19.25 17.65 48.53 11.23 19.65 3.342 4.679 5.347 6.016 6.684 4 x 6 4.010 <u>4 x 8</u> 25.38 32.38 3-1/2 x 7-1/4 30.66 111.1 14.80 25.90 4.405 5.286 6.168 7.049 7.930 8.811 3-1/2 x 9-1/4 33.05 5.621 6.745 7.869 11.24 4 x 10 49.91 230.8 18.89 8.993 10.12 4 x 12 3-1/2 x 11-1/4 39.38 73.83 415.3 22.97 40.20 6.836 8.203 9.570 10.94 12.30 13.67 678.5 27.05 4 x 14 3-1/2 x 13-1/4 46.38 102.41 47.34 8.051 9.661 11.27 12.88 14.49 16.10 4 x 16 3-1/2 x 15-1/4 53.38 135.66 1034 31.14 54.49 9.266 11.12 12.97 14.83 16.68 18.53

16

#Q7: Actual Beam Bending Moment, M #Q8: Actual Maximum Shear Force (at reaction), V Steps:

- 1- Draw free body diagram
- 2- Find maximum moments and shear
- 3- Draw moment and shear diagrams

$$M_{max} = \frac{P.L}{4} + \frac{w.L^2}{8} = \frac{1540 \times 10}{4} + \frac{3.763 \times 10^2}{8}$$
$$= 3850 + 47.03 = 3897.03FT - LB$$
$$P_{max} = \frac{W.L}{4} = \frac{1540}{3.763 \times 10}$$

$$V_{max} = \frac{P}{2} + \frac{W.L}{2} = \frac{1540}{2} + \frac{3.763 \times 10}{2}$$
$$= 3850 + 47.03 = 788.81 LBS$$

17

#Q7: Actual Beam Bending Moment, M#Q8: Actual Maximum Shear Force (at reaction), VSteps:

- 1- Draw free body diagram
- 2- Find maximum moments and shear
- **3-** Draw moment and shear diagrams

$$M_{max} = \frac{P.L}{4} + \frac{w.L^2}{8} = \frac{1540 \times 10}{4} + \frac{3.763 \times 10^2}{8}$$
$$= 3850 + 47.03 = 3897.03FT - LB$$
$$V_{max} = \frac{P}{2} + \frac{w.L}{2} = \frac{1540}{2} + \frac{3.763 \times 10}{2}$$
$$= 3850 + 47.03 = 788.81 LBS$$

#Q9: Size Factor, CF #Q10: Wet Service Factor for Fb, CM_b #Q11: Wet Service Factor for Fv, CM_v

According to the table, for 4×8 in lumber with 15% moisture content:

$$C_F = 1.3$$

 $C_{Mb} = 1$
 $C_{Mv} = 1$

Table 4A Adjustment Factors

Repetitive Member Factor, C_r

Wet Service Factor, C_M

factors from the following table:

Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Flat Use Factor, C_{fu}

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_b , shall also be permitted to be multiplied by the following flat use factors:

Flat	t Use Factors, C _{fu}		_
Width	Thickness (breadth)	_
(depth)	2" & 3"	4"	_
2" & 3"	1.0	_	_
4"	1.1	1.0	
5"	1.1	1.05	
6"	1.15	1.05	
8"	1.15	1.05	
10" & wider	1.2	1.1	

Wet Service Factors, C_M

When dimension lumber is used where moisture con-

tent will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service

F _b	\mathbf{F}_{t}	F_{v}	$F_{c\perp}$	Fc	$E \mbox{ and } E_{\mbox{\scriptsize min}}$		
0.85*	1.0	0.97	0.67	0.8**	0.9		
* when $(F_b)(C_F) \le 1,150$ psi, $C_M = 1.0$							
** when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$							

NOTE

To facilitate the use of Table 4A, shading has been employed to distinguish design values based on a 4" nominal width (Construction, Standard, and Utility grades) or a 6" nominal width (Stud grade) from design values based on a 12" nominal width (Select Structural, No.1 & Btr, No.1, No.2, and No.3 grades).

Size Factor, C_F

Tabulated bending, tension, and compression parallel to grain design values for dimension lumber 2" to 4" thick shall be multiplied by the following size factors:

		F	Ъ	Ft	F _c
		Thickness	(breadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	13	1.3	1.1
No.1 & Btr,	8"	1.2 >	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated design	values and size factor	'S
Construction, Standard	2", 3", & 4"	1.0	1.0	1.0	1.0
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4	_	0.4	0.6

#Q12: Factored Allow. Bending Stress, F'b #Q13: Factored Allow. Shear Stress, F'v

$$F'_{b} = F_{b}. C_{F}. C_{Mb} = 775 \times 1.3 \times 1 = 1,007.5 PSR$$

$$F'_{V} = F_{V}.C_{MV} = 120 \times 1 = 120 PSI$$

Allowable Flexure Stress F_{v}

 F_{ν} from tables determined by species and grade

F_v' = F_v (usage factors)

Usage factors for shear:

- C_D Load Duration Factor
- C_M Moisture Factor
- Ct Temperature Factor
- C_i Incising Factor

Adjustment Factors

Allowable Flexure Stress F_{b}

F_b from tables determined by species and grade

 $\mathsf{F}_{\mathsf{b}}{}' = \mathsf{F}_{\mathsf{b}} \left(\mathsf{C}_{\mathsf{D}} \, \mathsf{C}_{\mathsf{M}} \, \mathsf{C}_{\mathsf{t}} \, \mathsf{C}_{\mathsf{L}} \, \mathsf{C}_{\mathsf{F}} \, \mathsf{C}_{\mathsf{fu}} \, \mathsf{C}_{\mathsf{i}} \, \mathsf{C}_{\mathsf{r}} \, \mathsf{)} \right.$

Usage factors for flexure: C_D Load Duration Factor

#Q14: Actual Bending Stress, fb_actual #Q15: Actual Shear Stress, fv_actual

$$F_{b} = \frac{M}{S} = \frac{3897.03 \ FTLB \ \times 12}{30.66} = 1,525.25 \ PSR$$
$$F_{v} = 1.5 \ \frac{V}{A} = 1.5 \ \frac{788.81}{25.38} = 46.62 \ PSR$$

Table 1	B Sectio	n Prop	erties o	of Stan	dard D	ressed	(S4S) S	Bawn L	umber			
			X-)	AXIS	Y-1	AXIS						
	Standard	Area		Moment		Moment	Appro	ximate w	eight in po	ounds per	linear foo	ot (lbs/ft)
Nominal	Dressed	of	Section	of	Section	of		of pie	ce when d	ensity of	wood equ	als:
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia						
b x d	b x d	Α	Sxx	Ixx	Syy	l _{yy}	25 lbs/ft ³	30 lbs/ft ³	35 lbs/ft ³	40 lbs/ft ³	45 lbs/ft ³	50 lbs/ft ³
	in. x in.	in. ²	in. ³	in.4	in. ³	in.4						
Boards ¹												
1 x 3	3/4 x 2-1/2	1.875	0.781	0.977	0.234	0.088	0.326	0.391	0.456	0.521	0.586	0.651
1 x 4	3/4 x 3-1/2	2.625	1.531	2.680	0.328	0.123	0.456	0.547	0.638	0.729	0.820	0.911
1 x 6	3/4 x 5-1/2	4.125	3.781	10.40	0.516	0.193	0.716	0.859	1.003	1.146	1.289	1.432
1 x 0	3/4 X 7-1/4 3/4 x 9-1/4	5.438	0.570	23.82	0.060	0.255	1 204	1.155	1.322	1.510	2 169	2.400
1 x 10	3/4 x 11-1/4	8.438	15.82	88.99	1.055	0.325	1.204	1,758	2 051	2 344	2.100	2,930
Dimensio	n Lumber (see N	DS 4.1.3.	2) and Dec	kina (see	NDS 4.1.3	3.5)	1.400	1.700	2.001	2.044	2.007	2.000
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703	0.651	0.781	0.911	1.042	1.172	1.302
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984	0.911	1.094	1.276	1.458	1.641	1.823
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266	1.172	1.406	1.641	1.875	2.109	2.344
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547	1.432	1.719	2.005	2.292	2.578	2.865
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039	1.888	2.266	2.643	3.021	3.398	3.776
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602	2.409	2.891	3.372	3.854	4.336	4.818
2 X 12 2 x 14	1-1/2 X 11-1/4	10.00	31.04 43.80	290.8	4.219	3,104	2.950	3.510	4.102	4.000	5.273	5.659
3 × 4	2-1/2 x 3-1/2	8.75	5 10	8.932	3.646	4 557	1.519	1.823	2 127	2 431	2 734	3.038
3 x 5	2-1/2 x 4-1/2	11.25	8.44	18.98	4.688	5.859	1.953	2.344	2.734	3.125	3.516	3,906
3 x 6	2-1/2 x 5-1/2	13.75	12.60	34.66	5.729	7.161	2.387	2.865	3.342	3.819	4.297	4.774
3 x 8	2-1/2 x 7-1/4	18.13	21.90	79.39	7.552	9.440	3.147	3.776	4.405	5.035	5.664	6.293
3 x 10	2-1/2 x 9-1/4	23.13	35.65	164.9	9.635	12.04	4.015	4.818	5.621	6.424	7.227	8.030
3 x 12	2-1/2 x 11-1/4	28.13	52.73	296.6	11.72	14.65	4.883	5.859	6.836	7.813	8.789	9.766
3 x 14	2-1/2 x 13-1/4	33.13	73.15	484.6	13.80	17.25	5.751	6.901	8.051	9.201	10.35	11.50
3 x 16	2-1/2 x 15-1/4	38.13	96.90	/38.9	15.89	19.86	6.619	7.943	9.266	10.59	11.91	13.24
4 X 4 4 X 5	3-1/2 X 3-1/2 3-1/2 x 4-1/2	12.20	11.81	26.58	0 188	12.51	2.127	2.552	2.977	3.403	3.828	4.255
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11 23	19.65	3 342	4 010	4 679	5 347	6.016	6 684
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90	4.405	5.286	6.168	7.049	7.930	8.811
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05	5.621	6.745	7.869	8.993	10.12	11.24
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20	6.836	8.203	9.570	10.94	12.30	13.67
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34	8.051	9.661	11.27	12.88	14.49	16.10
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49	9.266	11.12	12.97	14.83	16.68	18.53
Timbers (5" x 5" and large	er)*										
Post and	Timber (see NDS	5 4.1.3.4 a	nd NDS 4.	1.5.3)	15 10	24.47	2 516	4 240	4 0 2 2	5 625	6 3 2 9	7 024
5x5 6x6	4-1/2 x 4-1/2 5-1/2 x 5-1/2	20.25	27.73	76.26	27.73	76.26	5 252	6 302	4.922	5.625 8.403	0.320	10.50
6 x 8	5-1/2 x 7-1/2	41 25	51.56	193.4	37.81	104.0	7 161	8 594	10.03	11 46	12 89	14.32
8 x 8	7-1/2 x 7-1/2	56.25	70.31	263.7	70.31	263.7	9.766	11.72	13.67	15.63	17.58	19.53
8 x 10	7-1/2 x 9-1/2	71.25	112.8	535.9	89.06	334.0	12.37	14.84	17.32	19.79	22.27	24.74
10 x 10	9-1/2 x 9-1/2	90.25	142.9	678.8	142.9	678.8	15.67	18.80	21.94	25.07	28.20	31.34
10 x 12	9-1/2 x 11-1/2	109.3	209.4	1204	173.0	821.7	18.97	22.76	26.55	30.35	34.14	37.93
12 x 12	11-1/2 x 11-1/2	132.3	253.5	1458	253.5	1458	22.96	27.55	32.14	36.74	41.33	45.92
12 x 14	11-1/2 x 13-1/2	155.3	349.3	2358	297.6	1/11	26.95	32.34	37.73	43.13	48.52	53.91
14 X 14	13-1/2 X 13-1/2	182.3	410.1 540.6	2768	410.1	2/08	31.04	37.97	44.30	50.63	56.95	03.28
16 x 16	15-1/2 x 15-1/2	209.3	620.6	4810	620.6	4810	41 71	50.05	58.39	66 74	75.08	83.42
16 x 18	15-1/2 x 17-1/2	271.3	791.1	6923	700.7	5431	47.09	56.51	65.93	75.35	84.77	94.18
18 x 18	17-1/2 x 17-1/2	306.3	893.2	7816	893.2	7816	53.17	63.80	74.44	85.07	95.70	106.3
18 x 20	17-1/2 x 19-1/2	341.3	1109	10813	995.3	8709	59.24	71.09	82.94	94.79	106.6	118.5
20 x 20	19-1/2 x 19-1/2	380.3	1236	12049	1236	12049	66.02	79.22	92.4	105.6	118.8	132.0
20 x 22	19-1/2 x 21-1/2	419.3	1502	16150	1363	13285	72.79	87.34	101.9	116.5	131.0	145.6
22 x 22	21-1/2 x 21-1/2	462.3	1656	17806	1656	17806	80.25	96.30	112.4	128.4	144.5	160.5
22 x 24	21-1/2 x 23-1/2	505.3	1979	23252	1810	19463	87.72	105.3	122.8	140.3	157.9	1/5.4
24 x 24	20-1/2 X 20-1/2	552.3	2103	20410	2103	20410	90.00	115.1	134.2	155.4	172.0	191.0

#Q16: Bending Stress Passing #Q17: Shear Stress Passing

> $F'_{b} = 1,007.5 PSI$ $F'_{V} = 120 PSI$

 $F_b = 1,525.25 PSI$ $F_v = 46.62 PSI$

$$F'_b < F_b \Rightarrow Fail$$

 $F'_V > F_V \Rightarrow Pass$

Lab01

6 DESIGN I	PROVISIONS AND EQUAT	IONS	This for
able 3.3.3 Effective Length, ℓ_* , for Be	nding Members		
Cantilever ¹	where $\ell_{\rm u}/{\rm d} \leq 7$		where $C_u/d \ge 7$
Uniformly distributed load	ℓ _a =1.33 ℓ _a		ℓ_{+} =0.90 ℓ_{n} + 3
Concentrated load at unsupported end	ℓ _e =1.87 ℓ _u		$C_s = 1.44 \ C_u + 36$
Single Span Beam ^{1,3}	where $\ell_{\rm g}/{\rm d} < 7$		where $\ell_w/d \ge 7$
Uniformly distributed load	€,=2.06 ℓ _µ		ℓ_{e} =1.63 ℓ_{u} + 3
Concentrated load at center with no inter-	€ _c =1.80 € _u		ℓ_s =1.37 ℓ_u + 3
Concentrated load at center with lateral		$\ell_e = 1.11 \ell_e$	
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points		ℓ _s =1.68 ℓ _s	
Three equal concentrated loads at 1/4 points .		ℓ_q =1.54 ℓ_u	
Four equal concentrated loads at 1/5 points		ℓ _e =1.68 ℓ _u	
Five equal concentrated loads at 1/6 points		Ce=1.73 Cu	
Six equal concentrated loads at 1/7 points		ℓ,=1.78 ℓ₀	
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application		€ _e =1.84 € _u	
Equal end moments		ℓ,-1.84 ℓu	

3.3.3.6 The slenderness ratio, R_B , for bending members shall be calculated as follows:

 $R_{\rm B} = \sqrt{\frac{\ell_{\rm e} d}{b^2}}$ (3.3-5) 3.3.3.7 The slenderness ratio for bending members.

R_B, shall not exceed 50.

Structures II	Name 1	
Arch 324	Name 2	
	Name 3	
	Wood Beams	

Description

This project uses observation and calculation to understand how bracing effects the stability and performance of a wooden beam.

Goals

lu

45' = 540" 22.5'=270"

15' = 180"

11.25'=135"

To observe the bending behavior of a simple span beam through physical modeling. To see the effects of unbraced length on lateral buckling. To calculate the effective length for different bracing conditions.

Procedure

- Set the 1/16"x1/2" basswood stick in the support as shown. This approximately
 models a 2x12 (1.5" x1.25") at 1:24 scale with a span of 45 FT.
- First load the unbraced stick (lu = 45') at the center line with you finger. Observe the lateral buckling failure. Find le and calculate R₈ from the NDS formula 3.3-5
- 3. Next brace the stick at the center load point (fu = 22.5'). Again, observe the lateral failure. Find fe and calculate $R_{\rm B}$ from the NDS formula 3.3-5
- 4. Now brace and load the stick at the 1/3 points (fu = 15') and observer the lateral failure. Find fe and calculate Rs from the NDS formula 3.3-5
- 5. Finally, brace and load the stick at the 1/4 points ($l_{\rm H}$ = 11.25') and again observer the failure. Find $l_{\rm H}$ and calculate R_B from the NDS formula 3.3-5
- Compare the R₀ values found for the 4 bracing conditions and note how the bracing effects the slenderness. Note which case comes closest to 50 and which one is the smallest. As R₀ decreases, the beam gets more stable and stronger.

Beam Properties: b = 1.5 IN d = 11.25 IN L = 45 FT = 540 IN

Lab01

Structures II Arch 324

Name 1	
Name 2	

Name 3

Wood Beams

Description

This project uses observation and calculation to understand how bracing effects the stability and performance of a wooden beam.

Goals

To observe the bending behavior of a simple span beam through physical modeling. To see the effects of unbraced length on lateral buckling. To calculate the effective length for different bracing conditions.

Procedure

- 1. Set the 1/16"x1/2" basswood stick in the support as shown. This approximately models a 2x12 (1.5" x1.25") at 1:24 scale with a span of 45 FT.
- 2. First load the unbraced stick (lu = 45') at the center line with you finger. Observe the lateral buckling failure. Find le and calculate R_B from the NDS formula 3.3-5
- 3. Next brace the stick at the center load point ($\ell u = 22.5'$). Again, observe the lateral failure. Find le and calculate R_B from the NDS formula 3.3-5
- 4. Now brace and load the stick at the 1/3 points ($\ell u = 15'$) and observer the lateral failure. Find le and calculate R_B from the NDS formula 3.3-5
- 5. Finally, brace and load the stick at the 1/4 points (lu = 11.25) and again observer the failure. Find le and calculate R_B from the NDS formula 3.3-5
- 6. Compare the R_B values found for the 4 bracing conditions and note how the bracing effects the slenderness. Note which case comes closest to 50 and which one is the smallest. As R_B decreases, the beam gets more stable and stronger.

_____ Beam Properties: b = 1.5 IN d = 11.25 IN L = 45 FT = 540 IN

 R_B

DESIGN PROVISIONS AND EQUATIONS

Cantilever ¹	where $\ell_u/d < 7$		where $\ell_u/d \ge 7$
Uniformly distributed load	ℓ _e =1.33 ℓ _u		$\ell_{\rm e}$ =0.90 $\ell_{\rm u}$ + 3d
Concentrated load at unsupported end	$\ell_{\rm e}$ =1.87 $\ell_{\rm u}$		ℓ_{e} =1.44 ℓ_{u} + 3d
Single Span Beam ^{1,2}	where $\ell_u/d < 7$		where $\ell_u/d \ge 7$
Uniformly distributed load	ℓ_{e} =2.06 ℓ_{u}		$\ell_{\rm e}$ =1.63 $\ell_{\rm u}$ + 3d
Concentrated load at center with no inter- mediate lateral support	$\ell_{\rm e}$ =1.80 $\ell_{\rm u}$		$\ell_{\rm e}$ =1.37 $\ell_{\rm u}$ + 3d
Concentrated load at center with lateral support at center		$\ell_{\rm e}$ =1.11 $\ell_{\rm u}$	
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points		$\ell_{\rm e}$ =1.68 $\ell_{\rm u}$	
Three equal concentrated loads at 1/4 points with lateral support at 1/4 points		$\ell_{\rm e}$ =1.54 $\ell_{\rm u}$	
Four equal concentrated loads at 1/5 points with lateral support at 1/5 points		$\ell_{\rm e}$ =1.08 $\ell_{\rm u}$	
Five equal concentrated loads at 1/6 points with lateral support at 1/6 points		$\ell_{\rm e}$ =1.73 $\ell_{\rm u}$	
Six equal concentrated loads at 1/7 points with lateral support at 1/7 points		$\ell_{\rm e}$ =1.78 $\ell_{\rm u}$	
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application		ℓ_{e} =1.84 ℓ_{u}	
Equal end moments		$\ell_{e}=1.84 \ell_{u}$	

 For single span or cantilever bending ers with loading conditions not specified in Table 3.3.

 $\ell_e = 2.06 \ell_u$ where $\ell_u/d < 7$ $\ell_n = 1.63 \ \ell_n + 3d$ where $7 \le \ell_n/d \le 14.3$

 $\ell_{e} = 1.84 \ \ell_{u}$ where $\ell_{u}/d > 14.3$

16

2. Multiple span applications shall be based on table values or engineering analysis.

Copyright @ American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorized. AMERICAN WOOD COUNCIL

_____ 3.3.3.6 The slenderness ratio, R_B, for bending where members shall be calculated as follows: Fb* = reference bending design value multiplied by all applicable adjustment factors except Cfu, $R_{B} = \sqrt{\frac{\ell_{e}d}{h^{2}}}$ (3.3-5) C_V (when $C_V \leq 1.0$), and C_L (see 2.3), psi 3.3.3.7 The slenderness ratio for bending members. E = 1.20 E_{min}

NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION

R_B, shall not exceed 50. 3.3.3.8 The beam stability factor shall be calculated as follows:

3.3.3.9 See Appendix D for background information concerning beam stability calculations and Appendix F for information concerning coefficient of variation in modulus of elasticity (COV_E).

3.3.3.10 Members subjected to flexure about both principal axes (biaxial bending) shall be designed in accordance with 3.9.2

3.4 Bending Members – Shear

3.4.1 Strength in Shear Parallel to Grain (Horizontal Shear)

3.4.1.1 The actual shear stress parallel to grain or shear force at any cross section of the bending member shall not exceed the adjusted shear design value. A check of the strength of wood bending members in shear perpendicular to grain is not required.

3.4.1.2 The shear design procedures specified herein for calculating f_v at or near points of vertical support are limited to solid flexural members such as sawn lumber, structural glued laminated timber, structural composite lumber, or mechanically laminated timber beams. Shear design at supports for built-up components containing load-bearing connections at or near points of support, such as between the web and chord of a truss, shall be based on test or other techniques.

3.4.2 Shear Design Equations

The actual shear stress parallel to grain induced in a sawn lumber, structural glued laminated timber, structural composite lumber, or timber pole or pile bending member shall be calculated as follows:

 $f_v = \frac{VQ}{Ib}$

For a rectangular bending member of breadth, b. and depth, d, this becomes:

 $f_v = \frac{3V}{2bd}$

Copyright © American Wood Council. Downloaded/printed pursuant to License Agreement. No reproduction or transfer authorized. AMERICAN WOOD COUNCIL

(3.4-1)

(3.4-2)

3.4.3 Shear Design 3.4.3.1 When calculating the shear force, V, in bending members:

(a) For beams supported by full bearing on one surface and loads applied to the opposite surface, uniformly distributed loads within a distance from supports equal to the depth of the bending member, d, shall be permitted to be ignored. For beams supported by full bearing on one surface and loads applied to the opposite surface, concentrated loads within a distance, d, from supports shall be permitted to be multiplied by x/d where x is the distance from the beam support face to the load (see Figure 3C).

3

SNOI

17

Lab01

\rightarrow Group work instructions

Please form groups of 2 to 4 students.

Please do not forget to write all group members' names on both sheets.

Return the completed sheets to me at the end of the session.

Please ensure that you attend the recitation sessions.

If you are unable to attend a session, send me an email so that we can discuss how to proceed. *Email: arfazel@umich.edu*

