

Arch324 STRUCTURES II

Winter 2025 Recitation

FACULTY: Prof. Peter von Bülow Mohsen Vatandoost

Arch324: STRUCTURES II

Welcome to Recitation session 01/17 Mohsen Vatandoost (Ph.D., M.Sc., M. Arch)

mohsenv@umich.edu

Office: Room 3122

hours:

Fri: 11:30 - 12:30

Mon, Wed: 11:00 - 12:00

Click here to Schedule -----walk-ins welcome!

Please feel free to ask questions.

Contact:

Arch324: STRUCTURES II

Welcome to Recitation session 01/17

Outline:

- Quick **Recap** of the week
- Provide the solution for the assignment (Homework 1)

Contact:

- Answering student's questions
- Lab: Beam Deflection

Please feel free to ask questions.

Recap of the week

Allowable Stress Design by NDS Flexure

 F_b

Allowable Flexure Stress Fb'

F_b from NDS Supplement tables determined by species and grade

 F_b ' = F_b (usage factors)

usage factors for flexure:

C_D Load Duration Factor

C_M Moisture Factor

C_t Temperature Factor

C_L Beam Stability Factor

C_F Size Factor

Cfu Flat Use

C_i Incising Factor

C_r Repetitive Member Factor

Actual Flexure Stress fb

$$f_b = Mc/I = M/S$$

$$S = \frac{1}{c} = bd^2/6$$

Check/ Design

Recap of the week

Allowable Stress Design by NDS Shear

Allowable Shear Stress Fv'

 \boldsymbol{F}_{ν} from tables determined by species and grade

$$\mathbf{F}_{v}$$
' = \mathbf{F}_{v} (usage factors)

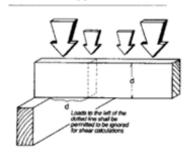
usage factors for shear:

C_D Load Duration Factor

C_M Moisture Factor

C_t Temperature Factor

C_i Incising Factor



Actual Shear Stress fv

$$f_v = VQ / | b = 1.5 V/A$$

Can use V at d from support as maximum

Shear at Supports

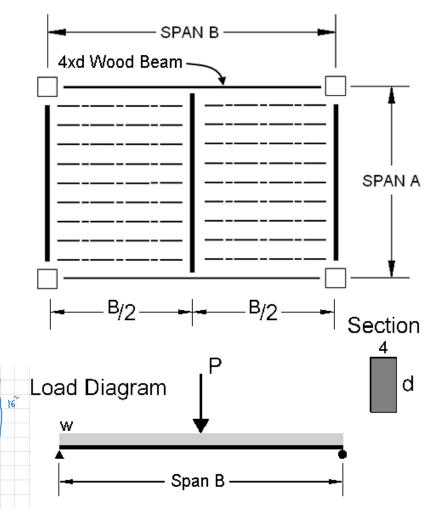
Check/ Design

Recap of the week

Adjustment Factors

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber

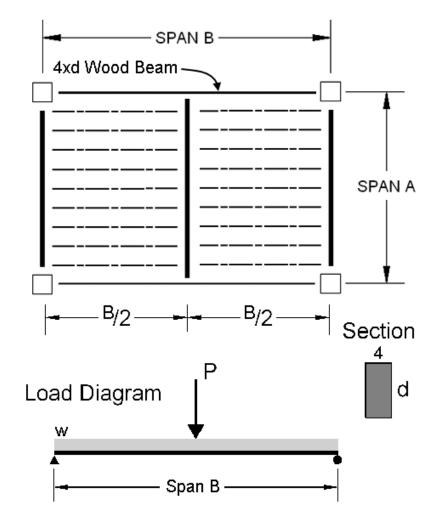
		ASD only				AS	SD an	d LRI	FD					LRFD only		
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor	
$F_b = F_b$	х	CD	См	Ct	C_L	$C_{\mathbf{F}}$	C_{fu}	Ci	Cr	-	-	-	K _F	фь	λ	
$F_t^{\raisebox{3.5pt}{\text{\circle*{1.5}}}} = F_t$	x	CD	См	C_{t}	-	$C_{\mathbf{F}}$	-	C_{i}	-	-	-	-	K _F	ϕ_{t}	λ	
$\mathbf{F_v} = \mathbf{F_v}$	x	CD	$C_{\mathbf{M}}$	C_{t}	-	-	-	C_{i}	-	-	-	-	K _F	φ_{v}	λ	
$F_{c\perp} = F_{c\perp}$	x	-	См	C_{t}	-	-	-	Ci	-	-	-	Сь	K _F	фс	λ	
$F_c = F_c$	x	CD	См	C_{t}	-	$C_{\mathbf{F}}$	-	Ci	-	$C_{\mathbb{P}}$	-	-	K _F	ф	λ	
E = E	x	-	См	Ct	-	-	-	Ci	-	-	-	-	-	-	-	
$E_{\min} = E_{\min}$	x	-	См	Ct	-	-	-	Ci	-	-	C_{T}	-	K _F	ф	-	



1. Wood Beam Analysis

Analyze the given 4x dimensioned lumber beam to determine if it passes or fails the NDS code criteria. The beam carries both dead and live floor load plus its own selfweight. Check the actual shear and bending stresses against the factored allowable stresses including all applicable factors from the NDS. Load duration is based on the live load (CD = 1.0). Assume normal temperature, and no incising (Ct = Ci = 1.0). Find the beam selfweight including the given moisture content. The beam is braced at the ends and the C.L. (meets criteria in 4.4.1) so CL = 1.0.

DATASET: 1 -3-NORTHERN **Wood Species** WHITE **CEDAR** No.1 Wood Grade 16 FT Span A 14 FT Span B Nominal Depth of Beam, d 16 IN Moisture Content, m.c. 20 % Floor DL 9 PSF Floor LL 45 PSF


Problem:

WOOD Density

Note: (19) or less considered dry condition

#	Question	Your Response
1	Tabulated Allow. Bending Stress, Fb	PSI
2	Tabulated Allow. Shear Stress, Fv	PSI
3	Tabulated Wood Dry Density (specific gravity)	
4	Total Actual Applied Point Load, P	LBS
5	Wood Density (Including M.C.)	PCF
6	Beam Selfweight (Including M.C.), w	PLF
7	Actual Beam Bending Moment, M	FT-LB
8	Actual Maximum Shear Force (at reaction) , V	LBS
9	Size Factor, CF	
10	Wet Service Factor for Fb, CM_b	
11	Wet Service Factor for Fv, CM_v	
12	Factored Allow. Bending Stress, F'b	PSI
13	Factored Allow. Shear Stress, F'v	PSI
14	Actual Bending Stress, fb_actual	PSI
15	Actual Shear Stress, fv_actual	PSI
16	Bending Stress Passing: enter "1" for pass or "0" for fail	(1 or 0)
17	Shear Stress Passing: enter "1" for pass or "0" for fail	(1 or 0)

Analysis Procedure

Given: loading, member size, material and span.

Req'd: Safe or Unsafe (Pass/Fail)

1. Find Max Shear & Moment

- · Simple case equations
- · Complex case diagrams

Determine actual stresses

- f_b = M/S
- f_v = 1.5 V/A

Determine allowable stresses

- F_b and F_v (from NDS)
- F_b' = F_b (usage factors)
- F_v' = F_v (usage factors)

- 4. Check that actual ≤ factored allowable
 - $f_b \leq F'_b$
 - $f_v \le F'_v$
- Check deflection < building code max.
- Check bearing (F_{c⊥} ≥ Reaction/A_{bearing})

NDS Supplement

Wood Species → Northern White Cedar Wood Grade → No.1

Table 4A Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick)^{1,2,3}

(All species except Southern Pine — see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

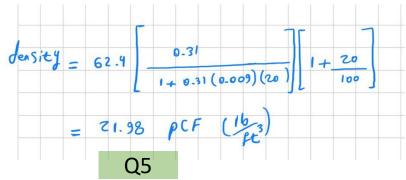
USE WITH TABLE 4A ADJUSTMENT FACTORS

				Design va	alues in pounds p	er square inch (p	si)			
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
		F _b	F _t	F_{v}	F _{cL}	F _c	E	E _{min}	G	
NORTHERN WHITE CEDAR										
Select Structural		775	450	120	370	750	800,000	290,000		
No. 1	2" & wider	575	325	120	370	600	700,000	260,000		
No. 2	2 & Widei	550	325	120	370	475	700,000	260,000		
No. 3		325	175	120	370	275	600,000	220,000	0.31	NELMA
Stud	2" & wider	425	250	120	370	300	600,000	220,000	0.51	INCLIVIA
Construction		625	375	120	370	625	700,000	260,000	03	
Standard	2" - 4" wide	350	200	120	370	475	600,000	220,000	Q3	
Utility		175	100	120	370	325	600,000	220,000		

Q1

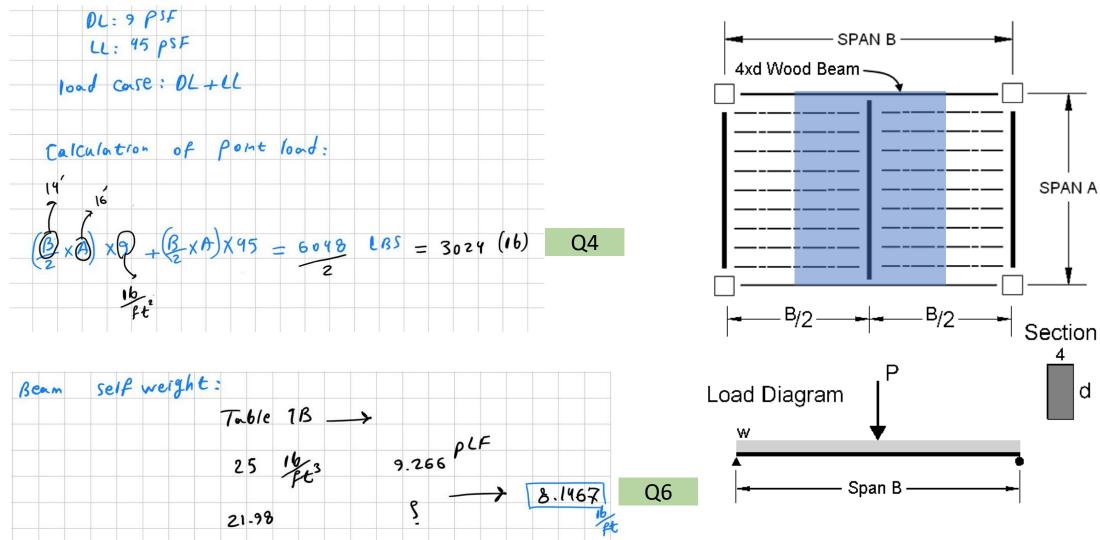
Q2

[NDS- Supplement- p 12]


The following formula shall be used to determine the density in lbs/ft³ of wood:

density =
$$62.4 \left[\frac{G}{1 + G(0.009)(m.c.)} \right] \left[1 + \frac{m.c.}{100} \right]$$

where:


G = specific gravity of wood

m.c. = moisture content of wood, %

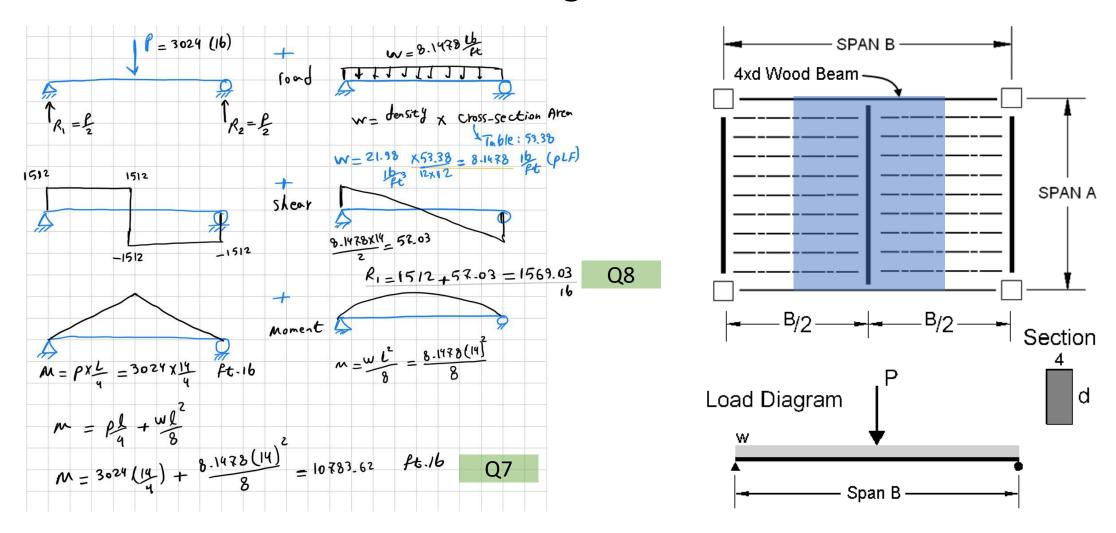


Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber

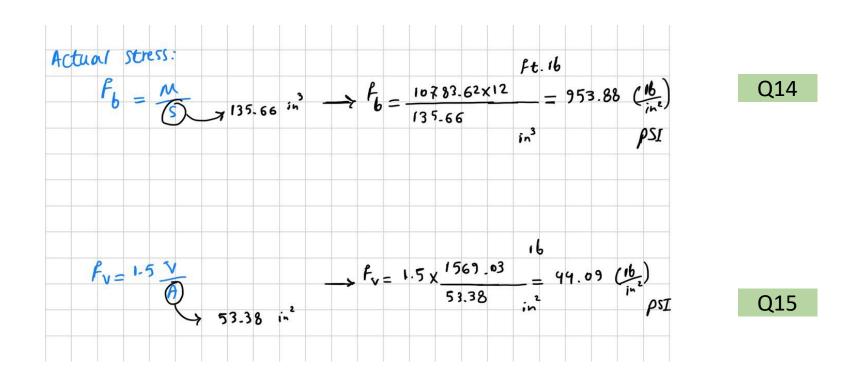

			X-)	(AXIS	Y-1	/ AXIS						
	Standard	Area		Moment		Moment	Appro	ximate w	eight in po	ounds per	linear foo	t (lbs/ft)
Nominal	Dressed	of	Section	of	Section	of		of pie	ce when d	lensity of	wood equ	als:
Size	Size (S4S)	Section	Modulus	Inertia	Modulus		_				_	
b x d	b x d	Α	S _{xx}	I _{xx}	Syy	lyy	25 lbs/ft ³	30 lbs/ft ³	35 lbs/ft ³	40 lbs/ft ³	45 lbs/ft ³	50 lbs/ft ³
	in. x in.	in. ²	in. ³	in.4	in.3	in. ⁴						
4 × 4	3-1/2 x 3-1/2	42.25	7.15	40 E4	7.146	42 E4	2 427	2 552	2.077	2.402	2.020	4.253
4 x 4		12.25		12.51		12.51	2.127	2.552	2.977	3.403	3.828	
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08	2.734	3.281	3.828	4.375	4.922	5.469
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65	3.342	4.010	4.679	5.347	6.016	6.684
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90	4.405	5.286	6.168	7.049	7.930	8.811
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05	5.621	6.745	7.869	8.993	10.12	11.24
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20	6.836	8.203	9.570	10.94	12.30	13.67
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34	8.051	9.661	11.27	12.88	14.49	16.10
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49	9.266	11.12	12.97	14.83	16.68	18.53

Table 2.3.2	Frequently Used Load Duration
	Factors, C _D ¹

Load Duration	$\mathbf{C}_{\mathbf{D}}$	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

Load duration is based on the live load (CD = 1.0)

Wet

Table 2.3.3 To	emperature Fac	ctor, Ct		
Reference Design	In-Service		C_t	
Values	Moisture – Conditions ¹	T≤100°F	100°F <t≤125°f< th=""><th>125°F<t≤150°f< th=""></t≤150°f<></th></t≤125°f<>	125°F <t≤150°f< th=""></t≤150°f<>
F _t , E, E _{min}	Wet or Dry	1.0	0.9	0.9
E E E and E	Dry	1.0	0.8	0.7
F_b , F_v , F_c , and $F_{c\perp}$	Wat	1.0	0.7	0.5

^{1.} Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.

1.0

0.7

0.5

normal temperature, Ct = 1.0

		F	Ъ	F _t	F_c
		Thickness	Thickness (breadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated design	values and size factor	s
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4	_	0.4	0.6

Q9

Size Factors, C_F = 1.0

Table 4.3.8	Incising Factors, Ci
Design Value	C_{i}
E, E _{min}	0.95
F_b , F_t , F_c , F_v	0.80
$F_{e\perp}$	1.00

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Q11	
Wet Service Fa	ctors, Cy

	F_{b}	F_{t}	$F_{\rm v}$	$F_{\rm c\perp}$	F_{c}	\boldsymbol{E} and $\boldsymbol{E}_{\text{min}}$
	0.85*	1.0	0.97	0.67	0.8**	0.9
×	when (F	$(C_F) \le 1,150$	psi, C _M =	1.0		

$$F_b * C_f = 575 < 1150 \text{ then } C_M = 1$$
 Q10

Wet Service Factors, CM

no incising, $C_i = 1.0$

^{**} when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$

3.3.3.6 The slenderness ratio, R_B, for bending members shall be calculated as follows:

$$R_{B} = \sqrt{\frac{\ell_{e}d}{b^{2}}}$$
 (3.3-5)

- 3.3.3.7 The slenderness ratio for bending members, R_B, shall not exceed 50.
- 3.3.3.8 The beam stability factor shall be calculated as follows:

$$C_{L} = \frac{1 + (F_{bE}/F_{b}^{*})}{1.9} - \sqrt{\left[\frac{1 + (F_{bE}/F_{b}^{*})}{1.9}\right]^{2} - \frac{F_{bE}/F_{b}^{*}}{0.95}}$$
(3.3-6)

Beam stability factor, CL

Cantilever ¹	where $\ell_u/d < 7$		where $\ell_u/d \ge 7$
Uniformly distributed load	ℓ _e =1.33 ℓ _u	•	$\ell_{\rm e} = 0.90 \; \ell_{\rm u} + 3d$
Concentrated load at unsupported end	ℓ _e =1.87 ℓ _u	•	$\ell_{\rm e}$ =1.44 $\ell_{\rm u}$ + 3d
Single Span Beam ^{1,2}	where $\ell_{\rm u}/{\rm d} < 7$		where $\ell_{\rm u}/{\rm d} \ge 7$
Uniformly distributed load	$\ell_{\rm e}$ =2.06 $\ell_{\rm u}$	•	$\ell_{\rm e} = 1.63 \; \ell_{\rm u} + 3 {\rm d}$
Concentrated load at center with no intermediate lateral support	ℓ _e =1.80 ℓ _u		$\ell_{\rm e}$ =1.37 $\ell_{\rm u}$ + 3d
Concentrated load at center with lateral support at center		$\ell_{\rm e}$ =1.11 $\ell_{\rm u}$	
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points		$\ell_{\rm e}$ =1.68 $\ell_{\rm u}$	
Three equal concentrated loads at 1/4 points with lateral support at 1/4 points		$\ell_{\rm e}$ =1.54 $\ell_{\rm u}$	
Four equal concentrated loads at 1/5 points with lateral support at 1/5 points		$\ell_{\rm e}$ =1.68 $\ell_{\rm u}$	
Five equal concentrated loads at 1/6 points with lateral support at 1/6 points		$\ell_{\rm e}$ =1.73 $\ell_{\rm u}$	
Six equal concentrated loads at 1/7 points with lateral support at 1/7 points		$\ell_{\rm e}$ =1.78 $\ell_{\rm u}$	
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application		$\ell_{\rm e}$ =1.84 $\ell_{\rm u}$	
Equal end moments		$\ell_{\rm e}$ =1.84 $\ell_{\rm u}$	

The beam is braced at the ends and the C.L. (meets criteria in 4.4.1) so CL = 1.0.

 C_L

C_L = 1.0 when bracing meets 4.4.1 for the depth/width ratio

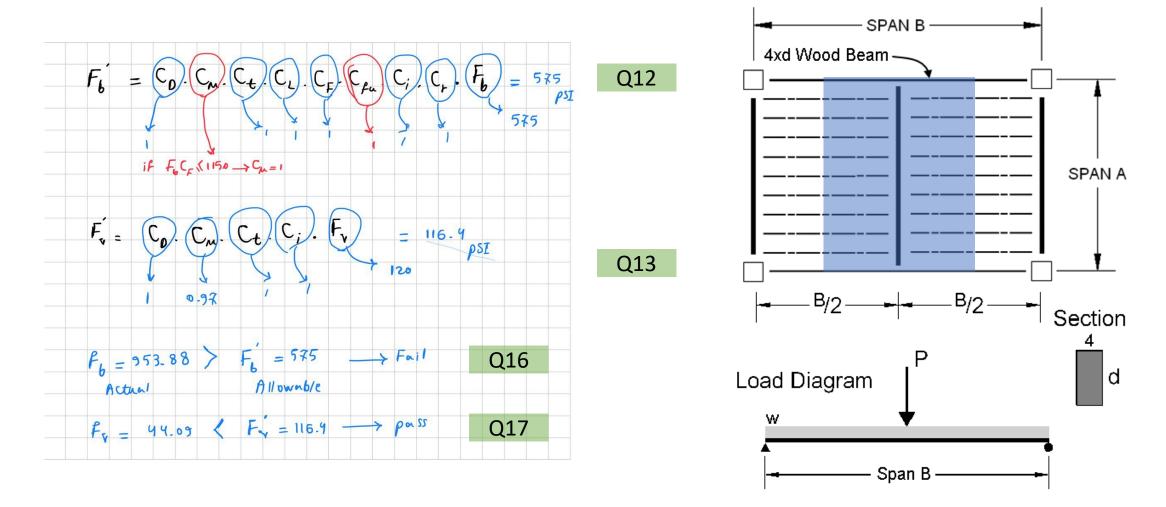
Otherwise

C_L < 1.0 calculate factor using section 3.3.3

Beam Depth/ Width Ratio	Type of Lateral Bracing Required	Example
2 to 1	None	
^{3 to 1} 2x6 2x8	The ends of the beam should be held in position	END BLOCKING
5 to 1 2x10	Hold compression edge in line (continuously)	NAILING/DECKING SHEATHING/DECKING JOINT OF BRAM
6 to 1 2x12	Diagonal bridging should be used	SHEATHING/ DEOKING JOIST BANDGING
7 to 1 2x14	Both edges of the beam should be held in line	MAILED SHEATHING OF PECHNIC TO PECHNIC TO PECHNICAL TO PE

Repetitive Member Factor, C_r

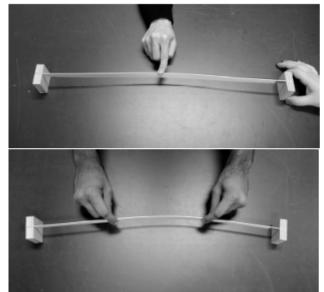
Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

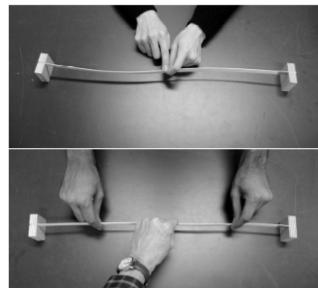

Flat Use Factor, C_{fu}

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_b , shall also be permitted to be multiplied by the following flat use factors:

Flat Use Factors, C_{fu}

Width	Thickness (breadth)		
(depth)	2" & 3"	4"	
2" & 3"	1.0		
4"	1.1	1.0	
5"	1.1	1.05	
6"	1.15	1.05	
8"	1.15	1.05	
10" & wider	1.2	1.1	





Beam Properties

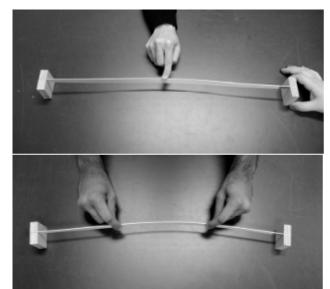
b = 1.5 IN d = 11.25 IN L = 45 FT

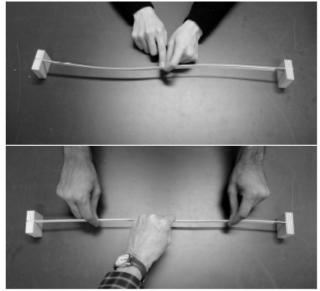
Description

This project uses observation and calculation to understand how bracing effects the stability and performance of a wooden beam.

Goals

To observe the bending behavior of a simple span beam through physical modeling.


To see the effects of unbraced length on lateral buckling.

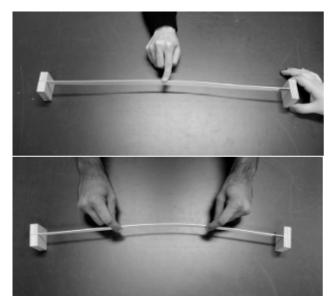

To calculate the effective length for different bracing conditions.

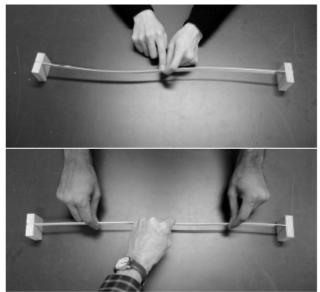
Beam Properties

b = 1.5 IN d = 11.25 IN L = 45 FT

Procedure

- Set the 1/16"x1/2" basswood stick in the support as shown. This approximately models a 2x12 (1.5" x1.25") at 1:24 scale with a span of 45 FT.
- 2. First load the unbraced stick ($\ell u = 45$ ') at the center line with you finger. Observe the lateral buckling failure. Find ℓe and calculate R_B from the NDS formula 3.3-5
- 3. Next brace the stick at the center load point (ℓ u = 22.5'). Again observe the lateral failure. Find ℓ e and calculate R_B from the NDS formula 3.3-5




Table 3.3.3 Effective Length, $\ell_{f e}$, for Bending Members						
Cantilever ¹	where $\ell_{\rm u}/{\rm d} < 7$		where $\ell_u/d \ge 7$			
Uniformly distributed load	$\ell_{\rm e}$ =1.33 $\ell_{\rm u}$		$\ell_{\rm e} = 0.90 \; \ell_{\rm u} + 3 {\rm d}$			
Concentrated load at unsupported end	ℓ_{e} =1.87 ℓ_{u}		$\ell_{\rm e}$ =1.44 $\ell_{\rm u}$ + 3d			
Single Span Beam ^{1,2}	where $\ell_{\rm u}/{\rm d} < 7$		where $\ell_u/d \ge 7$			
Uniformly distributed load	$\ell_{\rm e}$ =2.06 $\ell_{\rm u}$		$\ell_{\rm e}$ =1.63 $\ell_{\rm u}$ + 3d			
Concentrated load at center with no intermediate lateral support	$\ell_{\rm e}$ =1.80 $\ell_{\rm u}$		$\ell_{\rm e}$ =1.37 $\ell_{\rm u}$ + 3d			
Concentrated load at center with lateral support at center		$\ell_{\rm e}$ =1.11 $\ell_{\rm u}$				
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points		$\ell_{\rm e}$ =1.68 $\ell_{\rm u}$				
Three equal concentrated loads at 1/4 points with lateral support at 1/4 points		$\ell_{\rm e}$ =1.54 $\ell_{\rm u}$				
Four equal concentrated loads at 1/5 points with lateral support at 1/5 points		$\ell_{\rm e}$ =1.68 $\ell_{\rm u}$				
Five equal concentrated loads at 1/6 points with lateral support at 1/6 points		$\ell_{\rm e}$ =1.73 $\ell_{\rm u}$				
Six equal concentrated loads at 1/7 points with lateral support at 1/7 points		$\ell_{\rm e}$ =1.78 $\ell_{\rm u}$				
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application		$\ell_{\rm e}$ =1.84 $\ell_{\rm u}$				
Equal end moments		$\ell_{\rm e}$ =1.84 $\ell_{\rm u}$				

Beam Properties

b = 1.5 IN d = 11.25 IN L = 45 FT

- 4. Now brace and load the stick at the 1/3 points ($\ell u = 15$) and observer the lateral failure. Find ℓe and calculate R_B from the NDS formula 3.3-5
- 5. Finally, brace and load the stick at the 1/4 points (ℓ u = 11.25') and again observer the failure. Find ℓ e and calculate R_B from the NDS formula 3.3-5
- Compare the R_B values found for the 4 bracing conditions and note how the bracing effects the slenderness. Note which case comes closest to 50 and which one is the smallest. As R_B decreases the beam gets more stable and stronger.

Arch314: STRUCTURES I

Thank you.

Any question?

Please feel free to ask questions.

Contact:

