

Arch324 STRUCTURES II

Winter 2025 Recitation

FACULTY: Prof. Peter von Bülow Mohsen Vatandoost

Arch324: STRUCTURES II

Welcome to Recitation session 01/24 Mohsen Vatandoost {Ph.D., M.Sc., M. Arch}

mohsenv@umich.edu

Office: Room 3122 hours: Fri: 11:30 – 12:30 Mon, Wed: 11:00 - 12:00 walk-ins welcome!

Please feel free to ask questions.

Arch324: STRUCTURES II

Welcome to Recitation session 01/24

Outline:

- Quick Recap of the week
- Provide the solution for the assignment (Homework 2)
- Answering student's questions
- Lab: ---

Please feel free to ask questions.

Recap of the week

Analysis Procedure (capacity)

Given: <u>member size</u>, material and span. Req'd: Max. Safe Load (**capacity**)

- 1. Determine F_b and F'_b
- 2. Assume $f_b = F'_b$
 - Maximum actual = allowable stress
- 3. Solve stress equations for force
 - M = f_b S
 - V = 0.66 f_v A
- 4. Use maximum moment to find loads
 - · Back calculate a load from moment
 - Assumes moment controls
- 5. Check Shear
 - Use load found is step 4 to check shear stress.
 - If it fails (f_v > F'_v), then find load based on shear.
- 6. Check deflection
- 7. Check bearing

Wood Beam Analysis / Design

Design Procedure

Given: load, wood and grade, span, other usage conditions Req'd: <u>member size</u>

1. Find Max Shear & Moment

- · Simple case equations
- · Complex case diagrams
- 2. Determine allowable stresses, F_b
 - Apply usage factors to get F'_b
- 3. Solve $S = M/F_b$ '
- 4. Choose a section from Table 1B
 - Revise DL and F_b'
 - · Check step 3 and revise.

5. Check shear stress

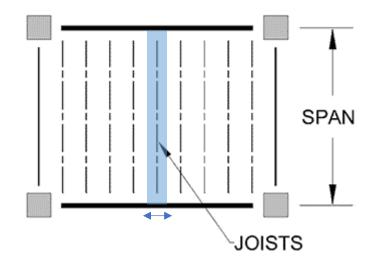
- · First for V max (easier)
- If that fails, try V at d distance from support.
- If the section still fails, choose a new section with A=1.5V/F_v'
- 6. Check deflection
- 7. Check bearing

Recap of the week

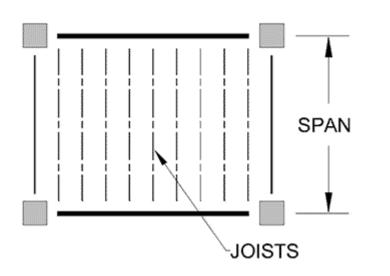
Adjustment Factors

		ASD only		ASD and LRFD							LRFD only				
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b = F_b$	x	CD	См	Ct	CL	CF	C _{fu}	Ci	Cr	-	-	-	K _F	фь	λ
$\dot{F_t} = F_t$	x	CD	См	Ct	-	CF	-	Ci	-	-	-	-	K _F	φ _t	λ
$F_v = F_v$	x	CD	См	C_t	-	-	-	C_i	-	-	-	-	K _F	$\boldsymbol{\varphi}_v$	λ
$F_{c\perp} = F_{c\perp}$	x	-	См	Ct	-	-	-	C_i	-	-	-	Сь	K _F	φ _c	λ
$\dot{F_c} = F_c$	x	CD	См	Ct	-	CF	-	Ci	-	Cp	-	-	K _F	ф.	λ
E = E	x	-	См	Ct	-	-	-	Ci	-	-	-	-	-	-	-
$E_{\min} = E_{\min}$	x	-	См	Ct	-	-	-	Ci	-	-	C_{T}	-	K _F	φ _s	-

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber



2. Wood Beam Design


Design a 2x dimensioned lumber floor joist to carry the given dead + live floor load (neglect joist selfweight). Assume the floor meets conditions of 4.4.1 so CL=1.0. Also Ct, Cfu, and Ci = 1.0. Find the short term deflection of your chosen beam under live load only (100% LL is short term). Compare your LL deflection with the code limit of L/360.

DATASET: 1 -23-	
Wood Species	HEM-FIR
Wood Grade	Select Structural
Span	7 FT
Joist Spacing, o.c.	32 IN
Moisture Content, m.c.	20 %
Floor DL	9 PSF
Floor LL	45 PSF

• Problem:

<u>#</u>	Question	Your Response
1	Tabulated Allow. Bending Stress, Fb	PSI
2	Tabulated Allow. Shear Stress, Fv	PSI
3	Tabulated Modulus of Elasticity, E	PSI
4	Total Applied Floor Load, (DL+LL)	PSF
5	Load on Joist, w	PLF
6	Actual Beam Bending Moment, M	FT-LB
7	Actual Maximum Shear Force (at reaction) , V	LBS
8	Nominal Depth of the Final Joist Used	IN
9	Size Factor, CF	
10	Repetetive Member Factor, Cr	
11	Wet Service Factor for Fb, CM_b	
12	Wet Service Factor for Fv, CM_v	
13	Factored Allow. Bending Stress, F'b	PSI
14	Factored Allow. Shear Stress, F'v	PSI
15	Actual Bending Stress, fb_actual	PSI
16	Actual Shear Stress, fv_actual	PSI
17	Factored Allow. Modulus of Elasticity, E'	PSI
18	Short Term Deflection for 100% LL	IN
19	Short Term Deflection Limit for L/360	IN
20	Deflection Passing: enter "1" for pass or "0" for fail	(1 or 0)

Design Procedure

Given: load, wood and grade, span, other usage conditions

Req'd: member size

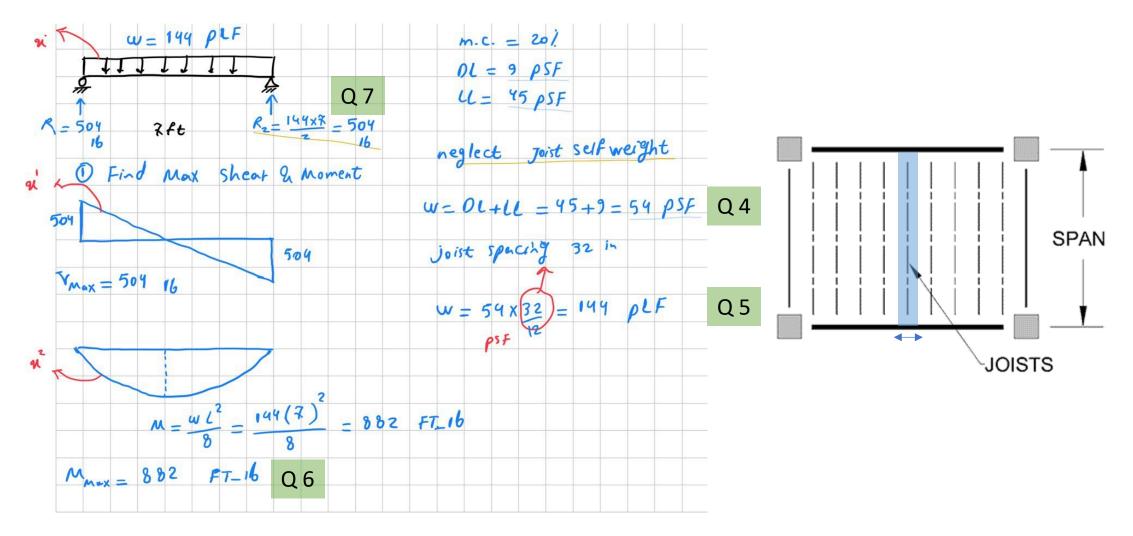
1. Find Max Shear & Moment

- Simple case equations
- · Complex case diagrams
- 2. Determine allowable stresses, F_b
 - Apply usage factors to get F'_b
- 3. Solve $S = M/F_b$ '
- 4. Choose a section from Table 1B
 - Revise DL and F_b'
 - · Check step 3 and revise.
- 5. Check shear stress
 - First for V max (easier)
 - If that fails, try V at d distance from support.
 - If the section still fails, choose a new section with A=1.5V/F_v'

- 6. Check deflection
- 7. Check bearing

NDS Supplement

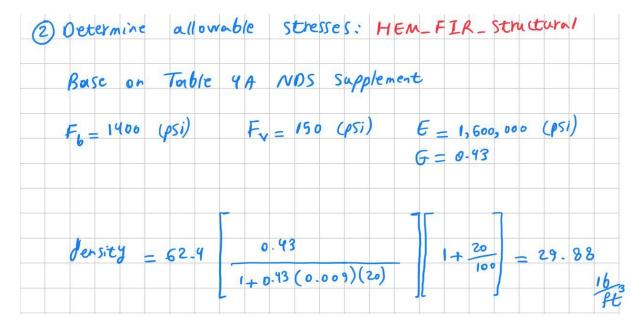
Wood Species \rightarrow HEM-FIR Wood Grade \rightarrow SELECT Structural


Table 4A Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick)^{1,2,3}

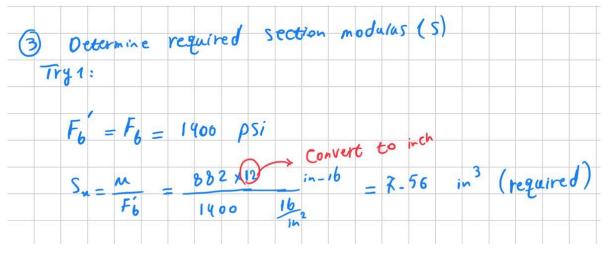
(All species except Southern Pine — see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

			Design values in pounds per square inch (psi)							
Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	of Elasticity	Specific Gravity ⁴	Grading Rules Agency
HEM-FIR		F _b	F _t	Fv	F _{مل}	F。	E	E _{min}	G	
Select Structural		1,400	925	150	405	1,500	1,600,000	580,000		
No. 1 & Btr		1,100	725	150	405	1,350	1,500,000	550,000		
No. 1	2" & wider	975	625	150	405	1,350	1,500,000	550,000		
No. 2		850	525	150	405	1,300	1,300,000	470,000		WCLIB
No. 3		500	300	150	405	725	1,200,000	440,000	0.43	WWPA
Stud	2" & wider	675	400	150	405	800	1,200,000	440,000		WWVFA
Construction		975	600	150	405	1,550	1,300,000	470,000		
Standard	2" - 4" wide	550	325	150	405	1,300	1,200,000	440,000		
Utility		250	150	150	405	850	1,100,000	400,000		
		Q 1		Q 2			Q 3			
ILLEGE										

USE WITH TABLE 4A ADJUSTMENT FACTORS


The following formula shall be used to determine the density in lbs/ft³ of wood:

[NDS- Supplement- p 12]


density =
$$62.4 \left[\frac{G}{1 + G(0.009)(m.c.)} \right] \left[1 + \frac{m.c.}{100} \right]$$

where:

- G = specific gravity of wood
- m.c. = moisture content of wood, %

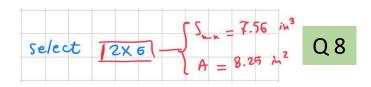


Table 1B Section Properties of Standard Dressed (S4S) Sawn Lumber

			X-)	(AXIS	Y-1	AXIS						
	Standard	Area		Moment		Moment	Appro	ximate w	eight in po	ounds per	linear foo	ot (Ibs/ft)
Nominal	Dressed	of	Section	of	Section	of		of pied	e when d	ensity of v	wood equ	als:
Size	Size (S4S)	Section	Modulus	Inertia	Modulus	Inertia						
b x d	b x d	Α	Sxx	Ixx	Syy	lyy	25 lbs/ft ³	30 lbs/ft ³	35 lbs/ft ³	40 lbs/ft ³	45 lbs/ft ³	50 lbs/ft ³
	in. x in.	in. ²	in. ³	in.4	in. ³	in.4						
Dimensio	Dimension Lumber (see NDS 4.1.3.2) and Decking (see NDS 4.1.3.5)											
2 x 3	1-1/2 x 2-1/2	3.750	1.56	1.953	0.938	0.703	0.651	0.781	0.911	1.042	1.172	1.302
2 x 4	1-1/2 x 3-1/2	5.250	3.06	5.359	1.313	0.984	0.911	1.094	1.276	1.458	1.641	1.823
2 x 5	1-1/2 x 4-1/2	6.750	5.06	11.39	1.688	1.266	1.172	1.406	1.641	1.875	2.109	2.344
2 x 6	1-1/2 x 5-1/2	8.250	7.56	20.80	2.063	1.547	1.432	1.719	2.005	2.292	2.578	2.865
2 x 8	1-1/2 x 7-1/4	10.88	13.14	47.63	2.719	2.039	1.888	2.266	2.643	3.021	3.398	3.776
2 x 10	1-1/2 x 9-1/4	13.88	21.39	98.93	3.469	2.602	2.409	2.891	3.372	3.854	4.336	4.818
2 x 12	1-1/2 x 11-1/4	16.88	31.64	178.0	4.219	3.164	2.930	3.516	4.102	4.688	5.273	5.859
2 x 14	1-1/2 x 13-1/4	19.88	43.89	290.8	4.969	3.727	3.451	4.141	4.831	5.521	6.211	6.901

[[]NDS- Supplement]

Table 2.3.2	Frequent Factors,	tly Used Load Duration C _{D¹}
Load Duration	CD	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

Load duration is based on the live load (CD = 1.0)

Table 2.3.3	Temperature	Factor, Ct
--------------------	-------------	------------

Reference Design Values	In-Service Moisture –		Ct	
values	Conditions ¹	T≤100°F	100°F <t≤125°f< th=""><th>125°F<t≤150°f< th=""></t≤150°f<></th></t≤125°f<>	125°F <t≤150°f< th=""></t≤150°f<>
F _t , E, E _{min}	Wet or Dry	1.0	0.9	0.9
E E E and E	Dry	1.0	0.8	0.7
F_b , F_v , F_c , and $F_{c\perp}$	Wet	1.0	0.7	0.5

1. Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.

normal temperature, Ct = 1.0

		Size Factors,	C _F		
		F	Ъ	Ft	Fc
		Thickness	(breadth)		
Grades	Width (depth)	2" & 3"	4"		
	2", 3", & 4"	1.5	1.5	1.5	1.15
Select	5"	1.4	1.4	1.4	1.1
Structural,	6"	1.3	1.3	1.3	1.1
No.1 & Btr,	8"	1.2	1.3	1.2	1.05
No.1, No.2,	10"	1.1	1.2	1.1	1.0
No.3	12"	1.0	1.1	1.0	1.0
	14" & wider	0.9	1.0	0.9	0.9
	2", 3", & 4"	1.1	1.1	1.1	1.05
Stud	5" & 6"	1.0	1.0	1.0	1.0
	8" & wider	Use No.3 Grade	tabulated design	values and size facto	rs
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0
Standard					
Utility	4"	1.0	1.0	1.0	1.0
	2" & 3"	0.4	_	0.4	0.6

Q 9

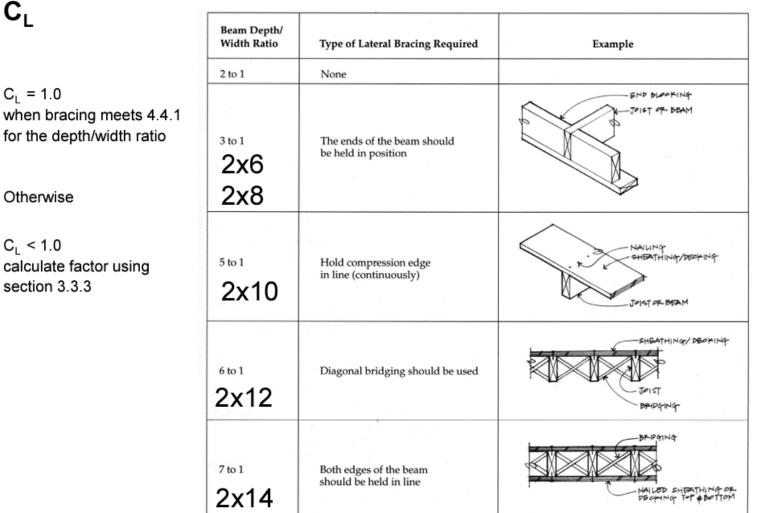
Size Factors, CF = 1.3

3.3.3.6 The slenderness ratio, R_B , for bending members shall be calculated as follows:

$$R_{\rm B} = \sqrt{\frac{\ell_{\rm e}d}{\rm b^2}} \tag{3.3-5}$$

3.3.3.7 The slenderness ratio for bending members, R_B , shall not exceed 50.

3.3.3.8 The beam stability factor shall be calculated as follows:


$$C_{L} = \frac{1 + (F_{bE}/F_{b}^{*})}{1.9} - \sqrt{\left[\frac{1 + (F_{bE}/F_{b}^{*})}{1.9}\right]^{2} - \frac{F_{bE}/F_{b}^{*}}{0.95}}$$
(3.3-6)

Beam stability factor, CL

Cantilever ¹	where $\ell_u/d < 7$		where $\ell_u/d \ge 7$
Uniformly distributed load	ℓ_{e} =1.33 ℓ_{u}	·	$\ell_{\rm e}$ =0.90 $\ell_{\rm u}$ + 3d
Concentrated load at unsupported end	ℓ_{e} =1.87 ℓ_{u}		$\ell_{\rm e}$ =1.44 $\ell_{\rm u}$ + 3d
Single Span Beam ^{1,2}	where $\ell_u/d < 7$		where $\ell_u/d \ge 7$
Uniformly distributed load	ℓ_{e} =2.06 ℓ_{u}		$\ell_{\rm e}$ =1.63 $\ell_{\rm u}$ + 3d
Concentrated load at center with no inter- mediate lateral support	$\ell_{\rm e}$ =1.80 $\ell_{\rm u}$	•	$\ell_{\rm e}$ =1.37 $\ell_{\rm u}$ + 3d
Concentrated load at center with lateral support at center		ℓ_{e} =1.11 ℓ_{u}	
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points		ℓ_{e} =1.68 ℓ_{u}	
Three equal concentrated loads at 1/4 points vith lateral support at 1/4 points		ℓ_{e} =1.54 ℓ_{u}	
Four equal concentrated loads at 1/5 points vith lateral support at 1/5 points		ℓ_{e} =1.68 ℓ_{u}	•
Five equal concentrated loads at 1/6 points vith lateral support at 1/6 points		ℓ_{e} =1.73 ℓ_{u}	•
Six equal concentrated loads at 1/7 points vith lateral support at 1/7 points		ℓ_{e} =1.78 ℓ_{u}	
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application		ℓ_{e} =1.84 ℓ_{u}	
Equal end moments		ℓ_{e} =1.84 ℓ_{u}	·

The beam is braced at the ends and the C.L. (meets criteria in 4.4.1) so CL = 1.0.

 $C_1 = 1.0$ when bracing meets 4.4.1 for the depth/width ratio

Otherwise

 $C_1 < 1.0$ calculate factor using section 3.3.3

Repetitive Member Factor, C_r

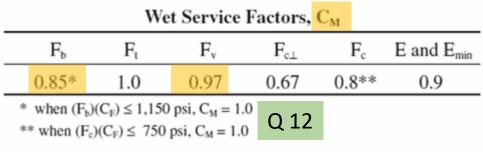
Q 10

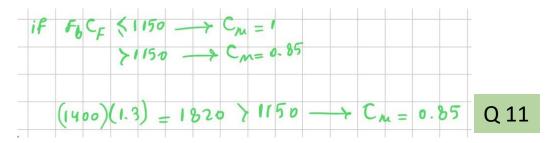
Bending design values, F_b , for dimension lumber 2" to 4" thick shall be multiplied by the repetitive member factor, $C_r = 1.15$, when such members are used as joists, truss chords, rafters, studs, planks, decking, or similar members which are in contact or spaced not more than 24" on center, are not less than 3 in number and are joined by floor, roof, or other load distributing elements adequate to support the design load.

Flat Use Factor, C_{fu}

Bending design values adjusted by size factors are based on edgewise use (load applied to narrow face). When dimension lumber is used flatwise (load applied to wide face), the bending design value, F_b , shall also be permitted to be multiplied by the following flat use factors:

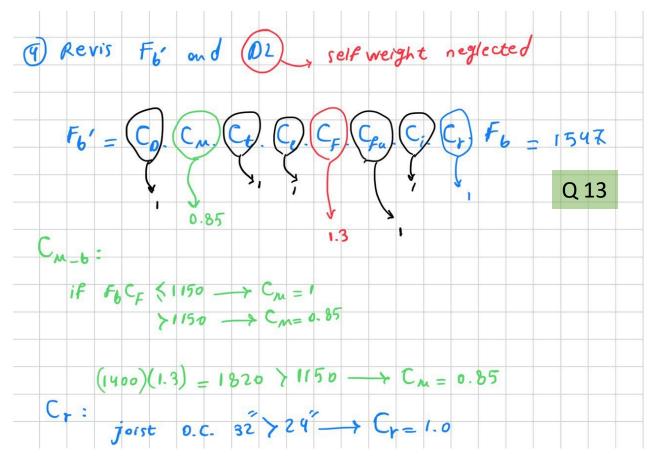
Width	Thickness (breadth)				
(depth)	2" & 3"	4"			
2" & 3" 4"	1.0				
5"	1.1 1.1	1.0 1.05			
6" 8"	1.15	1.05			
10" & wider	1.2	1.1			

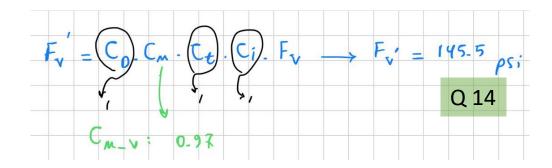

Flat Use Factors, C_{fu}

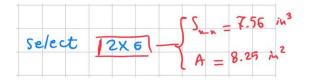

Table 4.3.8	Incising Factors, C _i					
Design Value	Ci					
E, E _{min}	0.95					
F_b, F_t, F_c, F_v	0.80					
F _{c⊥}	1.00					

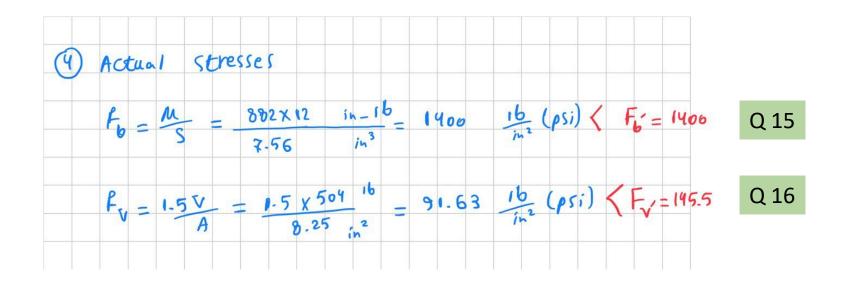
Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:




Wet Service Factors, CM


no incising, $C_i = 1.0$



3.5 Bending Members – Deflection

3.5.1 Deflection Calculations

If deflection is a factor in design, it shall be calculated by standard methods of engineering mechanics considering bending deflections and, when applicable, shear deflections. Consideration for shear deflection is required when the reference modulus of elasticity has not been adjusted to include the effects of shear deflection (see Appendix F).

3.5.2 Long-Term Loading

Where total deflection under long-term loading must be limited, increasing member size is one way to

provide extra stiffness to allow for this time dependent deformation (see Appendix F). Total deflection, Δ_T , shall be calculated as follows:

$$\Delta_{\rm T} = K_{\rm cr} \, \Delta_{\rm LT} + \Delta_{\rm ST} \tag{3.5-1}$$

where:

Kor = time dependent deformation (creep) factor

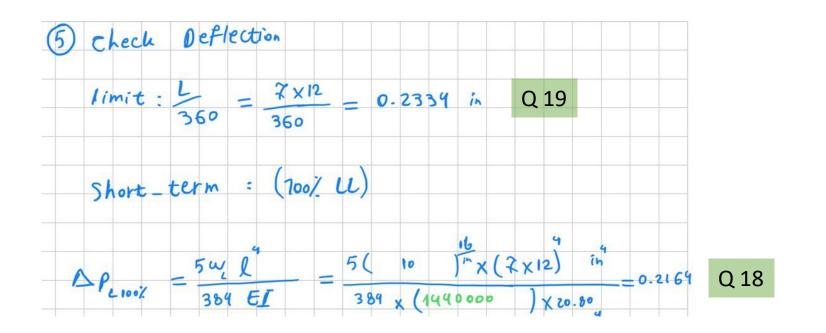
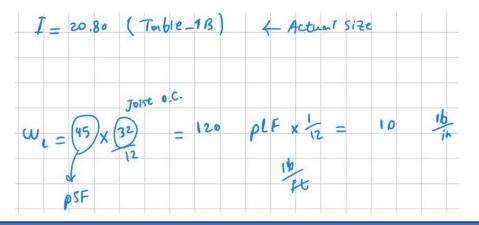

 = 1.5 for seasoned lumber, structural glued laminated timber, prefabricated wood l-joists, or structural composite lumber used in dry service conditions as defined in 4.1.4, 5.1.4, 7.1.4, and 8.1.4, respectively.

TABLE 1604.3 DEFLECTION LIMITS^{a, b, c, h, i}


CONSTRUCTION	L	S or W ^f	$D + L^{d,g}$
Roof members: ^e Supporting plaster or stucco ceiling Supporting nonplaster ceiling Not supporting ceiling	//360 //240 //180	//360 //240 //180	//240 //180 //120
Floor members	//360	—	//240
Exterior walls: With plaster or stucco finishes With other brittle finishes With flexible finishes	1 1 1	//360 //240 //120	
with plaster of staceo mistics	//360 //240 //120		
Farm buildings	-	-	//180
Greenhouses	-	-	//120

Arch324: STRUCTURES II

Thank you.

Any question?

Please feel free to ask questions.

Contact: