

Arch324 STRUCTURES II

Winter 2025 Recitation

FACULTY: Prof. Peter von Bülow

GSI: Mohsen Vatandoost

Arch324: STRUCTURES II

Welcome to Recitation session 01/31 Mohsen Vatandoost {Ph.D., M.Sc., M. Arch}

mohsenv@umich.edu

Office: Room 3122

hours:

Fri: 11:30 - 12:30

Mon, Wed: 11:00 - 12:00

walk-ins welcome!

Contact:

Please feel free to ask questions.

Arch324: STRUCTURES II

Welcome to Recitation session 01/31

Outline:

- Quick Recap of the week
- Provide the solution for the assignment (Homework 3)

Contact:

- Answering student's questions
- Lab: Wood Columns
- Tower Project: how to start

Please feel free to ask questions.

Recap of the week

Wood column Analysis / Design

Failure Mode - Strength

Short Columns - fail by crushing

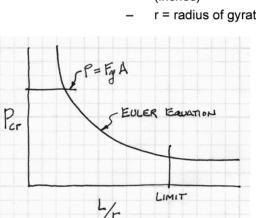
Analysis

$$f_c = \frac{P}{A} \le F'_c$$

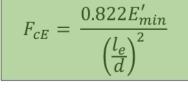
Design

$$A = \frac{P}{F'_c}$$

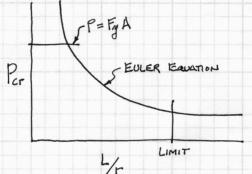
- f_c = Actual compressive stress
- A = Cross-sectional area of column (in²)
- P = Load on the column
- F'_c = Allowable compressive stress per codes



Failure Modes – Stability Long Columns - fail by buckling


Traditional Euler

$$f_{cr} = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$


- E = Modulus of elasticity of the column material (psi)
- K = Stiffness (curvature mode) factor
- L = Column length between ends (inches)
- r = radius of gyration = $\sqrt{I/A}$ (inches)

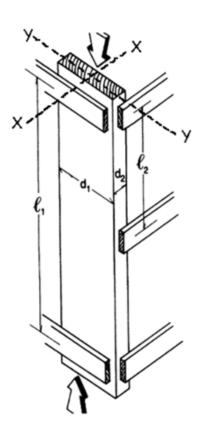
NDS Equation

- E'min = reduced E modulus (psi)
- le = Ke I, (inches)
- d (inches)
- $0.822 = \pi^2/12$

Slenderness Limited to < 50

 $r = d/\sqrt{12}$

Recap of the week


Capacity Analysis of Columns

Data:

- Column <u>size</u>, length
- Support conditions
- Material properties F_c, E

Required:

- Maximum Load Capacity, Pmax
- Calculate slenderness ratio I_e/d largest ratio governs. Must be < 50
- Find adjustment factors
 C_D C_M C_t C_F C_i
- 3. Calculate C_P
- Determine F'c by multiplying the tabulated Fc by all the above factors
- Set actual stress = allowable, fc = F'c
- 6. Find the maximum allowable load Pmax = F'c A



Recap of the week

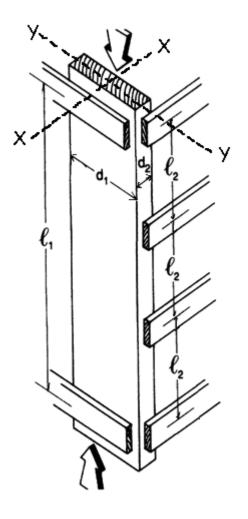
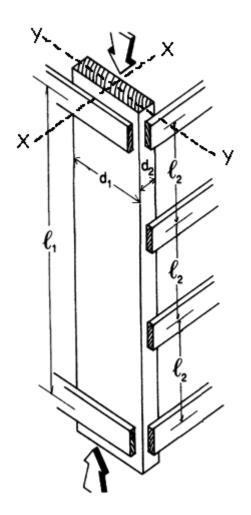

Adjustment Factors

Table 4.3.1 Applicability of Adjustment Factors for Sawn Lumber


		ASD only		ASD and LRFD								LRFD only			
		Load Duration Factor	Wet Service Factor	Temperature Factor	Beam Stability Factor	Size Factor	Flat Use Factor	Incising Factor	Repetitive Member Factor	Column Stability Factor	Buckling Stiffness Factor	Bearing Area Factor	Format Conversion Factor	Resistance Factor	Time Effect Factor
$F_b' = F_b$	x	CD	См	Ct	C_L	C_{F}	C_{fu}	Ci	Cr	-	-	-	K _F	фь	λ
$F_t = F_t$	x	CD	См	C_{t}	-	$C_{\mathbf{F}}$	-	C_{i}	-	-	-	-	K _F	ϕ_{t}	λ
$\mathbf{F_v} = \mathbf{F_v}$	x	CD	См	C_{t}	-	-	-	C_{i}	-	-	-	-	K _F	φ_{v}	λ
$F_{c\perp} = F_{c\perp}$	x	-	См	C_{t}	-	-	-	Ci	-	-	-	Сь	K _F	фс	λ
$F_c = F_c$	x	CD	C _M	C_{t}	-	$C_{\mathbf{F}}$	-	Ci	-	$C_{\mathbb{P}}$	-	-	K _F	ф	λ
$E_{\bullet} = E$	x	-	См	C_{t}	-	-	-	Ci	-	-	-	-	-	-	-
$E_{\min} = E_{\min}$	x	-	См	Ct	-	-	-	Ci	-	-	Ст	-	K _F	ф	-

• Problem:

<u>#</u>	Question	Your Response
1	Tabulated Allow. Compressive Stress, Fc	PSI
2	Tabulated Minimum Modulus of Elasticity, Emin	PSI
3	Load Duration Factor, CD	
4	Size Factor, CF	
5	Factored Allow. Modulus of Elasticity, E'min	PSI
6	Strong Axis (x-x) Slenderness Ratio, lex/d1	
7	Weak Axis (y-y) Slenderness Ratio, ley/d2	
8	Controling Slenderness Ratio, le/d	
9	Critical Buckling Design Value for Compression, FcE	PSI
10	Reference Comression Design Value, Fc*	PSI
11	Constant for Sawn Lumber, c	
12	Column Stability Factor, CP	
13	Factored Allow. Compressive Stress, F'c	PSI
14	Column Area, A	IN2
15	Maximum Allowable Axial Load Capacity, Pmax	LBS

NDS Supplement

Wood Species → HEM-FIR
Wood Grade → SELECT Structural

Table 4A Reference Design Values for Visually Graded Dimension Lumber (2" - 4" thick)^{1,2,3}

(All species except Southern Pine — see Table 4B) (Tabulated design values are for normal load duration and dry service conditions. See NDS 4.3 for a comprehensive description of design value adjustment factors.)

USE WITH TABLE 4A ADJUSTMENT FACTORS

Species and commercial grade	Size classification	Bending	Tension parallel to grain	Shear parallel to grain	Compression perpendicular to grain	Compression parallel to grain	Modulus o	f Elasticity	Specific Gravity ⁴	Grading Rules Agency
HEM-FIR		F _b	F _t	F_{v}	F_{cL}	F _c	E	E _{min}	G	
Select Structural No. 1 & Btr No. 1 No. 2 No. 3	2" & wider	1,400 1,100 975 850 500	925 725 625 525 300	150 150 150 150 150	405 405 405 405 405	1,500 1,350 1,350 1,300 725	1,600,000 1,500,000 1,500,000 1,300,000 1,200,000	580,000 550,000 550,000 470,000 440,000	0.43	WCLIB
Stud	2" & wider	675	400	150	405	800	1,200,000	440,000		WWPA
Construction Standard Utility	2" - 4" wide	975 550 250	600 325 150	150 150 150	405 405 405	1,550 1,300 850	1,300,000 1,200,000 1,100,000	470,000 440,000 400,000		

Q1

Q2

Table 2.3.2	Frequently Used Load Duration
	Factors, C _D 1

Load Duration	$\mathbf{C}_{\mathbf{D}}$	Typical Design Loads
Permanent	0.9	Dead Load
Ten years	1.0	Occupancy Live Load
Two months	1.15	Snow Load
Seven days	1.25	Construction Load
Ten minutes	1.6	Wind/Earthquake Load
Impact ²	2.0	Impact Load

Load duration is based on the live load (CD = 1.0)

Q3

Wet or Dry

Dry

Wet

Table 2.3.3	Temperature Fac	ctor, C _t		
Reference Design	n In-Service Moisture –		$\mathbf{C_t}$	
values	Conditions ¹	T≤100°F	100°F <t≤125°f< td=""><td>125°F<t≤150°f< td=""></t≤150°f<></td></t≤125°f<>	125°F <t≤150°f< td=""></t≤150°f<>

1.0

1.0

1.0

0.9

0.8

0.7

0.9

0.7

0.5

normal temperature, Ct = 1.0

 F_t , E, E_{min}

 F_b , F_v , F_c , and $F_{c\perp}$

^{1.} Wet and dry service conditions for sawn lumber, structural glued laminated timber, prefabricated wood I-joists, structural composite lumber, wood structural panels and cross-laminated timber are specified in 4.1.4, 5.1.4, 7.1.4, 8.1.4, 9.3.3, and 10.1.5 respectively.

		Size Factors,	C_F			
		F	F _b F _t Thickness (breadth)			
		Thickness	(breadth)			
Grades	Width (depth)	2" & 3"	4"			
	2", 3", & 4"	1.5	1.5	1.5	1.15	
Select	5"	1.4	1.4	1.4	1 1	
Structural,	6"	1.3	1.3	1.3	1.1	
No.1 & Btr,	8"	1.2	1.3	1.2	1 05	
No.1, No.2,	10"	1.1	1.2	1.1	1.0	
No.3	12"	1.0	1.1	1.0	1.0	
	14" & wider	0.9	1.0	0.9	0.9	
	2", 3", & 4"	1.1	1.1	1.1	1.05	
Stud	5" & 6"	1.0	1.0	1.0	1.0	
	8" & wider	Use No.3 Grade	tabulated design	gn values and size factors		
Construction,	2", 3", & 4"	1.0	1.0	1.0	1.0	
Standard						
Utility	4"	1.0	1.0	1.0	1.0	
	2" & 3"	0.4	_	0.4	0.6	

Q4

Size Factors, C_F = 1.0

Table 4.3.8	Incising Factors, C _i
Design Value	$C_{\mathbf{i}}$
E, E _{min}	0.95
F_b , F_t , F_c , F_v	0.80
$F_{e\perp}$	1.00

Wet Service Factor, C_M

When dimension lumber is used where moisture content will exceed 19% for an extended time period, design values shall be multiplied by the appropriate wet service factors from the following table:

Wet Service Factors, C_M

F_{b}	F _t	$F_{\rm v}$	$F_{\rm c\perp}$	F_c	E and E _{min}
0.85*	1.0	0.97	0.67	0.8**	0.9

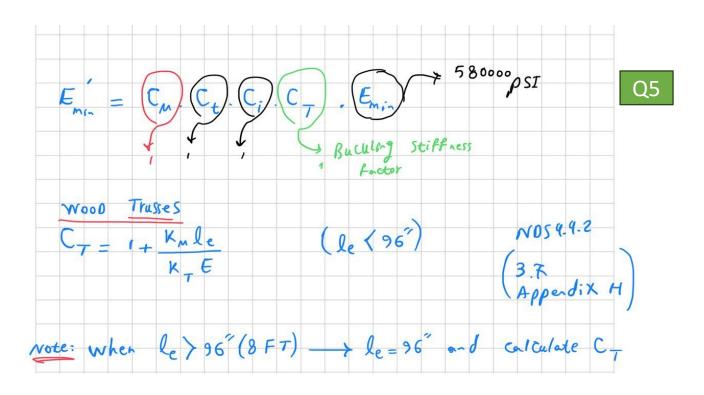
^{*} when $(F_b)(C_F) \le 1,150 \text{ psi}, C_M = 1.0$

m.c. = $15\% \rightarrow CM = 1.0$

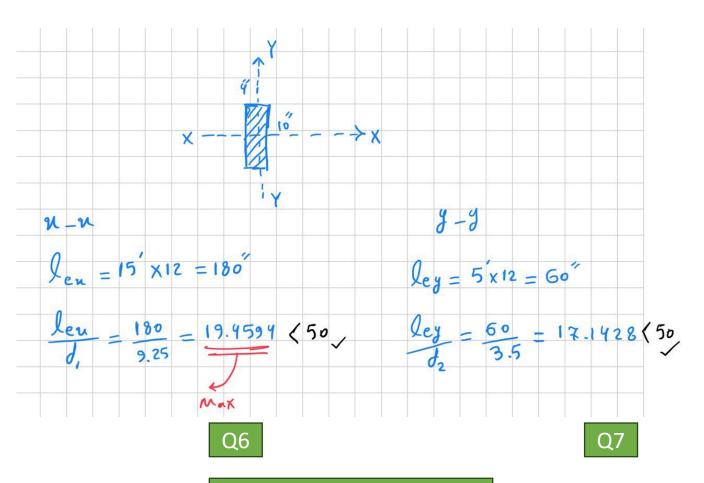
Wet Service Factors, CM

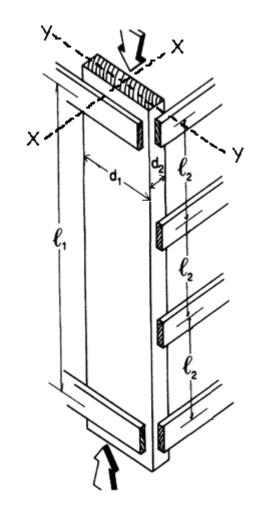
no incising, $C_i = 1.0$

^{**} when $(F_c)(C_F) \le 750 \text{ psi}, C_M = 1.0$


C_T Buckling stiffness factor

4.4.2 Wood Trusses


4.4.2.1 Increased chord stiffness relative to axial loads where a 2" x 4" or smaller sawn lumber truss compression chord is subjected to combined flexure and axial compression under dry service condition and has 3/8" or thicker plywood sheathing nailed to the narrow face of the chord in accordance with code required roof sheathing fastener schedules (see References 32, 33, and 34), shall be permitted to be accounted for by multiplying the reference modulus of elasticity design value for beam and column stability, E_{min} , by the buckling stiffness factor, C_T , in column stability calculations (see 3.7 and Appendix H). When $\ell_e < 96$ ", C_T shall be calculated as follows:


$$C_{T} = 1 + \frac{K_{M}\ell_{e}}{K_{T}E}$$

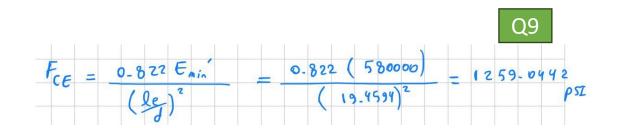
When $\ell_{\rm e}$ > 96", $C_{\rm T}$ shall be calculated based on $\ell_{\rm e}$ = 96".

Q8: maximum will govern

3.7.1 Column Stability Factor, C,

$$C_{P} = \frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right]^{2} - \frac{F_{cE}/F_{c}^{*}}{c}}$$
 (3.7-1)

where:

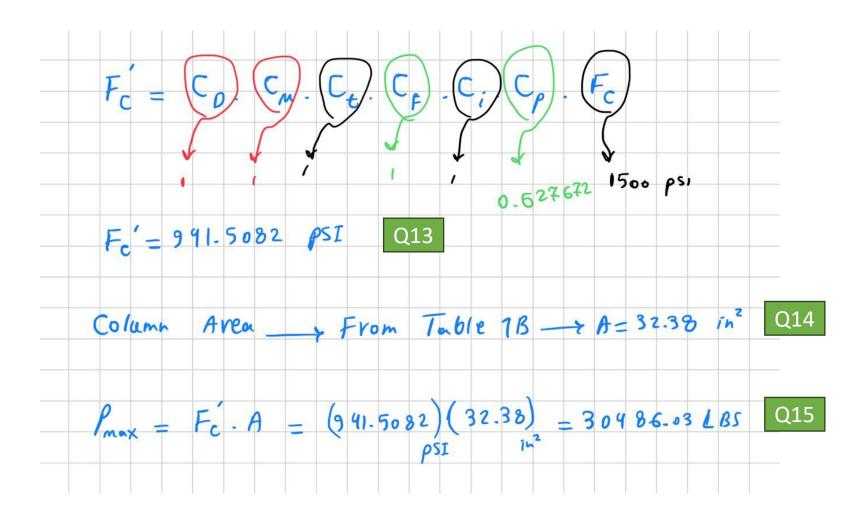

F_C* = reference compression design value parallel to grain multiplied by all applicable adjustment factors except C_P (see 2.3), psi

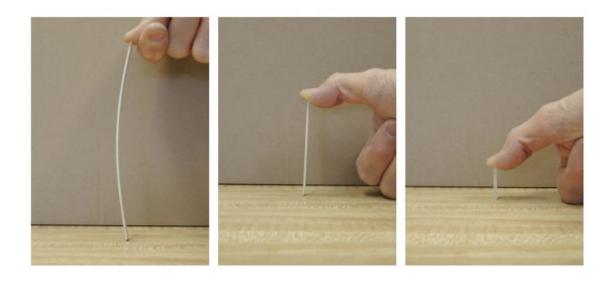
$$F_{cE} = \frac{0.822 \ E_{min}}{(\ell_e / d)^2}$$

c = 0.8 for sawn lumber

Q11

- c = 0.85 for round timber poles and piles
- c = 0.9 for structural glued laminated timber, structural composite lumber, and crosslaminated timber




Table 1B Section Properties of Standard Dressed (\$4\$) Sawn Lumber

			X-)	X-X AXIS Y-Y AXIS										
	Standard	Area		Moment	l .	Moment								
Nominal	Dressed	of	Section	of	Section	Of Inortic		of pied	e when d	ensity of v	vood equ	als:		
Size	Size (S4S)		Modulus	1	Modulus	Inertia	25 lbe/ft ³	30 lbe/ft ³	35 lbe/ft ³	40 lbe/ft ³	45 lbe/ft ³	50 lbs/ft ³		
bxd	b x d in. x in.	A in. ²	S _{xx} in. ³	in. ⁴	S _{yy} in. ³	l _{yy} in. ⁴	25 108/10	30 IDS/IC	33 108/10	40 105/10	45 IDS/IL	30 IDS/IL		
4 x 4	3-1/2 x 3-1/2	12.25	7.15	12.51	7.146	12.51	2.127	2.552	2.977	3,403	3.828	4.253		
4 x 5	3-1/2 x 4-1/2	15.75	11.81	26.58	9.188	16.08	2.734	3.281	3.828	4.375	4.922	5.469		
4 x 6	3-1/2 x 5-1/2	19.25	17.65	48.53	11.23	19.65	3.342	4.010	4.679	5.347	6.016	6.684		
4 x 8	3-1/2 x 7-1/4	25.38	30.66	111.1	14.80	25.90	4.405	5.286	6.168	7.049	7.930	8.811		
4 x 10	3-1/2 x 9-1/4	32.38	49.91	230.8	18.89	33.05	5.621	6.745	7.869	8.993	10.12	11.24		
4 x 12	3-1/2 x 11-1/4	39.38	73.83	415.3	22.97	40.20	6.836	8.203	9.570	10.94	12.30	13.67		
4 x 14	3-1/2 x 13-1/4	46.38	102.41	678.5	27.05	47.34	8.051	9.661	11.27	12.88	14.49	16.10		
4 x 16	3-1/2 x 15-1/4	53.38	135.66	1034	31.14	54.49	9.266	11.12	12.97	14.83	16.68	18.53		

[NDS- Supplement]

Lab: Wood Columns

Description

This project uses observation and calculation to understand the effect of slenderness on column capacity.

Goals

To observe the buckling behavior of columns through physical modeling.

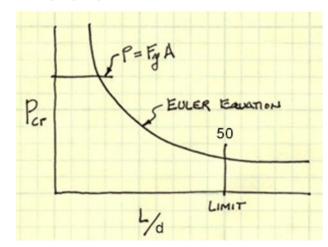
To find the controlling slenderness ratio.

To calculate the critical buckling and crushing loads.

Lab: Wood Columns

Procedure

- For the 1/16"x1/4" basswood column provided, with L=6" calculate the controlling (weak axis) slenderness ratio and Pcr using the Euler equation. Use K=1.0.
- Find the actual critical buckling load approximating the load with your finger.
- Repeat the procedure for L=3" and L=1".
- 4. Calculate the slenderness and Pcr for both of these lengths.
- 5. Calculate the ultimate crushing load based on the max compressive stress, Fc.
- Approximately locate P for each length on the load vs. slenderness curve shown below


Basswood Properties

Fc = 4745 psi
Area = 0.015625 in²
$$d_1$$
 = 0.25 in
 d_2 = 0.0625 in

Equations:

$$FcE = \frac{0.822 \text{ E/min}}{(\text{le/d})2}$$

$$P_{max} = F_c \times A$$

Tower Project: How to start

- ✓ Team up!
- ✓ Look at great examples: similar towers and high-rise buildings
- ✓ Look at student's work in the last semester in the course website
- ✓ Familiar yourself with DRFRAME
- √ Test material

Arch324: STRUCTURES II

Thank you.

Any question?

Please feel free to ask questions.

Contact:

